Что такое материя определение физика. Материя во Вселенной. Материя, вещество, поле, частицы. Физика материи. Движение, пространство, время как основные формы существования материи

Материя - объективная реальность, данная нам В ОЩУЩЕНИЯХ….

Материя несотворима, неуничтожима, вечна и бесконечна.

Типы материальных систем, известные современной науке:

1) элементарные частицы

4) молекулы

5) макроскопические тела

6) геологические системы

Этим и другим материальным системам соответствуют структурные уровни организации материи (материя структурирована и систематизирована)

Атрибут - неотъемлемое свойство материи .

1) Структурность материи проявляется в су­ществовании бесконечно многообразных материальных образований, каждое из которых представляет собой специфические единичные вещь, процесс, ко­торые локализованы в пространстве и времени: Вселенная, галактика, звезда, планета, молекула, атом, элементарная частица и др. Вместе с тем они тесно взаимосвязаны между собой, так как одни материальные образования явля­ются составными частями других, то есть входят в их структуру в качестве эле­ментов.

2) Системность материи появляется во взаимосвязи вещей и процессов, в регулярном пересечении структурных уровней организации материального мира, в постоянном нарушении автономии, «параллелизма» микро- , макро- и мегамиров, живого и неживого. Основная проблема здесь заключается в не­решенности вопроса перехода от неживой природы к живой в едином эволю­ционном процессе.

Материя - это все то, что прямо или косвенно действует на органы чувств человека и другие объекты. Окружающий нас мир, все существующее вокруг нас представляет собой материю. Неотъемлемое свойство материи - движение.

Движение материи - любые изменения, происходящие с материальными объектами в результате их взаимодействия.

Материя не существует в бесформенном состоянии, из нее образуется сложная иерархическая система материальных объектов различных масштабов и сложностей.

Для естествоиспытателей представляет интерес не материя или движение вообще, а конкретные виды материи и движения.

В современном естествознании различают 3 вида материи:

1. Вещество - основной вид материи, обладающий массой. К вещественным объектам относятся элементарные частицы, атомы, молекулы, многочисленные образовавшиеся из них материальные объекты. В химии вещества подразделяются на простые (с атомами одного химического элемента) и сложные (химические соединения). свойства вещества зависят от внешних условий и интенсивности взаимодействия атомов и молекул. Это и обуславливает различные агрегатные состояния вещества (твердое, жидкое, газообразное + плазма при сравнительно высокой температуре) переход вещества из одного состояния в другое можно рассмотреть как один из видов движения материи.


2. Физическое поле - особый вид материи, который обеспечивает физическое взаимодействие материальных объектов и систем.

Физические поля:

· Электромагнитное и гравитационное

· Поле ядерных сил

· Волновые (квантовые) поля

Источник физических полей - элементарные частицы. Направление для электромагнитного поля - источник, заряженные частицы

Физические поля, которые создаются частицами переносят взаимодействие между этими частицами с конечной скоростью.

Квантовые теории - взаимодействие обусловлено обменом квантами поля между частицами.

3. Физический вакуум - низшее энергетическое состояние квантового поля. Этот термин введен в квантовой теории поля для объяснения некоторых микропроцессов.

Среднее число частиц (квантов поля) вакууме равно нулю, однако в нем могут рождаться виртуальные частицы, то есть частицы в промежуточном состоянии, существующие короткое время. Виртуальные частицы влияют на физические процессы.

Принято считать, что не только вещество, но и поле и вакуум имеют дискретную структуру. Согласно квантовой теории поле, пространство и время в очень малых масштабах образуют пространственно-временную среду с ячейками. Квантовые ячейки настолько малы (10 -35 -10 -33), что их можно не учитывать при описании свойств электромагнитных частиц, считая пространство и время непрерывными.

Вещество воспринимается как непрерывная сплошная среда. для анализа и описания свойств такого вещества в большинстве случаев учитывается только его непрерывность. Однако, то же вещество при объяснении тепловых явлений, химических связей, электромагнитных излучений рассматривается как дискретная среда, которая состоит из взаимодействующих между собой атомов и молекул.

Дискретность и непрерывность присущи физическому полю, но при решении многих физических задач принято считать гравитационное, электромагнитное и другие поля непрерывными. Однако в квантовой теории поля предполагается, что физические поля дискретны, следовательно, для одних и тех же видов материи характерна прерывность и непрерывность.

Для классического описания природных явлений достаточно учитывать непрерывные свойства материи, а для характеристики различных микропроцессов - дискретные.

Непрерывность и дискретность - неотъемлемые свойства материи.

В окружающей нас природе встречаются самые разнообразные вещества: вода, песок, дерево, сталь, камень и т. п. По-другому все вещества часто называют материей. Материя может находиться в одном из трех состояний это твердое, жидкое и газообразное состояние. Хотя имеется и четвертое состояние – плазма (ионизированный газ). Но мы не будем углубляться в теорию.

Но при изучении электротехники, как и многих других наук, возникает вопрос о строении самого вещества . Не зная строения вещества, нельзя глубоко уяснить основных явлений электротехники, радиотехники, ядерной физики и др. Исследования строения вещества были начаты тысячи лет назад и продолжаются до сих пор. Ученые все глубже проникают в «тайны» строения вещества, используя их на благо человечества.

В природе встречаются простые и сложные вещества.

Простые вещества, называемые химическими элементами, является кирпичиком в «постройке» материи. То есть элемент не делится на более простые субстанции химическим путем. На сегодняшний день известно 118 элементов, хотя в природе существует 94 (24 получены искусственным путем). Все эти элементы вы можете наблюдать в Периодической системе Д. И. Менделеева.

ОПРЕДЕЛЕНИЕ: Простым веществом называется такое вещество, которое не может быть химически разложено.

Сложное вещество или соединение - это комбинация более двух химических элементов, которая может быть разделена химическим способом. Примером здесь можно привести воду, которая состоит из кислорода и водорода.

ОПРЕДЕЛЕНИЕ: Сложное вещество - это такое вещество, которое можно химическим путем разложить на составляющие его простые вещества.

Когда простые вещества входят в состав сложного, то они теряют свои характерные химические свойства. Вода, например, резко отличается по своим свойствам от газов водорода и кислорода, из которых она состоит.

Все вещества, простые и сложные, состоят из атомов и молекул. Что же значат все эти определения?

Молекула - эго наименьшая частица вещества, которую можно отделить от тела и которая обладает всеми свойствами, присущими данному телу.

ОПРЕДЕЛЕНИЕ: Молекула – это комбинация двух и более атомов.

Молекула простого вещества состоит из одинаковых атомов. Примерами простых веществ могут служить: медь, железо, кислород и т. д.

Молекула сложного вещества состоит из нескольких различных по своему строению атомов. Например, молекула воды состоит из двух атомов водорода и одного атома кислорода.

Молекулы любого вещества находятся в постоянном хаотическом движении. В зависимости от степени связи между молекулами мы различаем твердые, жидкие и газообразные вещества.

Наиболее тесную связь имеют молекулы твердого вещества, а наименее тесную - молекулы газообразного вещества.

ОПРЕДЕЛЕНИЕ: Атом – это наименьшая элементарная частица, сохраняющая свойства элемента, в который она входит.

В атоме любого вещества количество электронов и протонов одинаковое, а значит, общий отрицательный заряд электронов равен положительному заряду ядра. Эти заряды уравновешиваются, и сам атом никаких электрических свойств не проявляет, или, как говорят, электрически нейтрален.

Если атом (или молекула) по какой-либо причине потеряет несколько электронов (при столкновении с другими атомами, при нагревании и т. д.), то он окажется положительно заряженным. Такой атом (или молекула) называется положительным ионом.

Наоборот, если у атома (или молекулы) окажется избыток электронов, то он станет отрицательно заряженным. Отрицательно заряженный атом (или молекула) называется отрицательным ионом.

Разноименно заряженные ионы притягиваются друг к другу и образуют электрически нейтральную частицу вещества.

Наполняет пространство и служит главной составляющей всех живых и неживых элементов. Две, казалось бы, несовместимые области знаний, такие как наука и философия, согласны лишь в одном - в том, что материя выполняет главенствующую роль в жизни микро- и макромиров. Из чего состоит материя, которая нас окружает и из которой мы сделаны? Почему она принимает такие странные формы, многие из которых для нас еще даже не раскрыты? Попробуем в этом немного разобраться.

Как этот термин понимали великие люди?

О том, из чего состоит материя, и как она настолько кардинально меняет свои формы, люди начали думать еще со времен античности. В те годы не было микроскопов и телескопов, и даже самые мудрые философы не могли изучить какой-либо человеческий орган или просто деревяшку, из которой сбит стул, до атомного уровня. Однако античные знатоки четко знали, что такое пространство-время и как в нем ведут себя все элементы. Именно они составили трактовку, которая дошла до наших дней. Материя была поделена на две половины: вещи наполняли пространство, а события - время. Из-за постоянного хода последнего все предметы и живые объекты могли менять свою форму. Человек рождался, старел и умирал, дерево осыпалось, металл ржавел. В 17 веке физик и математик Лейбниц определил материю как субъект, определяющий свойства времени и пространства. В дальнейшем его труды проявились в теории относительности Эйнштейна.

Разглядывая что-либо под микроскопом

Если мы обратимся за помощью к биологической оптике, то своими глазами сможем увидеть, что материя состоит из атомов. Это простейшая характеристика данного термина, которая не имеет опровержений и не требует дальнейших доказательств. Атомами именуются малейшие частицы всего, что нас окружает, и нас самих. Структура каждого из них идентична. Но при этом в атомах каждого отдельного элемента нашего мира, будь то метановое облако в атмосфере Юпитера или печень собаки, закодирована информация о свойствах объекта-носителя. Атом состоит из ядра, которое всегда заряжено положительно, и электронов. Когда число протонов и электронов совпадает, данная частица становится нейтральной с точки зрения Если равновесие нарушается, то атом превращается в ион, который имеет положительный или отрицательный заряд.

Во что выливаются атомы?

Из скопления двух и более атомов образуется молекула. В ней помимо информации о носителе содержится также немалая доля соединительного вещества. Благодаря ему молекулы способны образовывать ту самую материю, о которой мы говорим. Такие соединения передают информацию от разных атомов друг через друга и создают тем самым неразрывное вещество. Самое интересное то, что группироваться могут молекулы изначально разных компонентов. Самым ярким примером тут послужит вода: в ней присутствует водород и кислород в определенном процентном соотношении. Получается, чтобы понять, из чего состоит материя, нам нужно лишь изучить элементы периодической таблицы Менделеева и найти их в тех или иных предметах, которые нас окружают.

Что видим мы невооруженным глазом?

Отодвинув в сторону телескоп, мы, получив определенные знания, видим, что материя состоит из вещества. Благодаря своему строению, которое можно рассмотреть через оптику, оно способно принимать одно из четырех агрегатных состояний: газообразное, жидкое, твердое и плазматическое. Первые три из них мы можем легко представить на примере той же воды, которая, будучи жидкой, может превратиться в лед или в газ. Некоторые другие элементы могут существовать лишь в одном из этих четырех состояний. Углубляясь в античную философию, невозможно не провести аналогию с четырьмя стихиями. Мудрецы выделяли среди них воду, землю, воздух и огонь. Очевидно, что плазме, которая была обнаружена совсем недавно, соответствует именно пламя.

Что излучает любое вещество?

Тем, кто учил в школе физику, известно, что материя состоит из энергии ровно так же, как и из вещества. Сами атомы и их мельчайшие частицы, двигаясь и сталкиваясь, излучают поля с индивидуальными частотами. Они преобразуются в электромагнитные, квантовые и в зависимости от свойств атомов конкретного вещества. Так как подобное взаимодействие и излучение происходит повсеместно, то есть и в теле человека, и в вакууме, и в вся наша материя наполнена энергией. Каждый объект обладает индивидуальным полем, которое имеет особенные свойства. Получается, что на мы все обмениваемся информацией, которую бессознательно воспринимаем и обрабатываем.

Обратная сторона медали

Мы кратко рассмотрели, из чего состоит материя и какими полями она может обладать. Теперь рассмотрим такой аспект, как Ученые полагают, что из нее состоит 85 % всей Вселенной. Темное вещество не излучает никаких полей, не имеет собственной гравитации, однако от него исходит энергия. Из-за того что невозможно зафиксировать электромагнитные волны, исходящие от темной материи, мы не можем ее поймать и понять ее природу. Возможно, в тайном составе античастиц кроется тайна сотворения Вселенной и всех нас.


Большинство людей могут легко назвать три классических состояния материи: жидкое, твердое и газообразное. Те, кто хотя бы немного интересовался физикой, добавят к этому списку плазму. Но на самом деле сегодня учёные существенно расширили список возможных состояний материи. Сегодня их, как минимум, десять.

1. Аморфные тела



Аморфные твердые вещества - необычная подгруппа известного твердого состояния материи. В обычном твердом объекте молекулы высоко организованы и не могут свободно передвигаться. Это придает твердому веществу высокую вязкость, которая является мерой сопротивления. А в жидкости - наоборот, молекулярная структура дезорганизована, что позволяет молекулам свободно двигаться, а жидкости - принимать форму сосуда, в который ее наливают.

Аморфное твердое вещество находится на полпути между этими двумя состояниями материи. Во время процесса, известного как витрификация, жидкость охлаждается и его вязкость повышается до такой степени, что она больше не течет подобно жидкости, но ее молекулы остаются неупорядоченными и не образуют кристаллическую структуру, как у нормального твердого вещества. Наиболее распространенным примером аморфного твердого вещества является стекло.

2. Сверхкритические флюиды



Большинство фазовых переходов из одного состояния в другое происходят при определенных температуре и давлении. Общеизвестно, что повышение температуры в конечном счете превращает жидкость в газ. Однако, когда давление увеличивается вместе с температурой, жидкость вместо этого переходит в сверхкритическое состояние, которое имеет свойства как газа, так и жидкости. Например, сверхкритические жидкости могут проходить сквозь твердые тела, как газ, но могут также действовать в качестве растворителя, как жидкость. Интересно, что сверхкритическая жидкость может обладать большинством свойств газа или жидкости, в зависимости от комбинации давления и температуры.

3. Вырожденное вещество

Аморфные твердые вещества существуют даже на планете Земля, а вырожденная материя может существовать только в звездах определенного типа. Подобная материя существует, когда ее форма и стабильность диктуются не температурой, как на Земле, а сложными квантовыми принципами, подобным принципу Паули. Из-за этого форма вырожденного вещества будет сохраняться, даже если температура вещества снизится до абсолютного нуля.

Известны два основных типа вырожденного вещества: электронно-вырожденное вещество и нейтронно-вырожденное вещество. Электронно-вырожденная материя существует в основном в звездах типа белый карлик, при условии, если масса звезды меньше в 1,44 раза, чем масса нашего Солнца. Если звезда массивнее этого предела (известного как предел Чандрасекара), она просто сколлапсируется в нейтронную звезду или черную дыру. А в черной дыре вещество преобразуется в нейтронно-вырожденную форму. Свободные нейтроны (не связанные в атомном ядре), как правило, имеют период полураспада 10,3 минуты, а в ядре нейтронной звезды нейтроны существуют вне ядра, образуя нейтронно-вырожденное вещество.

4. Сверхтекучее вещество


С далеких звезд перейдем вновь к Земле, чтобы обсудить сверхтекучесть. Сверхтекучее - состояние материи, которое существует, когда некоторые изотопы гелия, рубидия и лития охлаждаются до почти абсолютного нуля. Наиболее распространенным является сверхтекучий жидкий гелий. Когда гелий охлаждают до так называемой "точки" лямбда - 2,17 градусов Кельвина, то часть жидкости становится сверхтекучей. При этом атомы гелия взаимодействуют друг с другом так, что он может оставаться жидким вплоть до абсолютного нуля.

Также вещество в данном состоянии имеет очень странные свойства. Сверхтекучая жидкость, помещенная в пробирку, начинает ползти вверх по бокам пробирки, казалось бы, нарушая законы гравитации и поверхностного натяжения. При это жидкий гелий удержать невероятно сложно, поскольку он просачивается через малейшие поры. К примеру, из стандартного термоса, он "загадочно исчезнет" буквально за считанные минуты.

5. Конденсат Бозе-Эйнштейна


Конденсат Бозе-Эйнштейна, вероятно, является одной из самых неизученных и трудных для понимания форм материи. Во-первых, нужно понять, что такое бозоны и фермионы. Фермионов - частицы с полуцелым значением спина, такие как кварки и лептоны. Эти частицы подчиняются принципу Паули, с помощью которого образуется электронно-вырожденное вещество.

Бозон - частица с целым значением спина, а несколько бозонов могут принимать одинаковое квантовое состояние. К бозонам относятся любые частицы с зарядом энергии (например, фотоны). В 1920-х годах Альберт Эйнштейн, основываясь на работах индийского физика Бозе, предположил существование новой формы материи, основу которой составляют бозоны, охлажденные до температур, близких к абсолютному нулю. (меньше миллионной доли градуса выше абсолютного нуля).

Конденсаты Бозе-Эйнштейна очень похожи на сверхтекучее вещество, но имеют свои собственные уникальные свойства. Самым шокирующим является то, что БЭК может замедлить скорость света от его нормальной скорости в 300 000 метров в секунду. В 1998 году Гарвардский исследователь Лене Хау смог замедлить свет до всего лишь 60 километров в час, выстреливая лучом лазера сквозь сигарообразный образец БЭК. В ходе более позднего эксперимента, команда Хау смогла полностью остановить свет в БЭК.

6. Металл Яна-Теллера


Подобное вещество исследователям удалось успешно создать только в 2015 году. Если их эксперименты подтвердятся другими лабораториями, то это может изменить мир, поскольку метал Яна-Теллера обладают свойствами как изолятора, так и сверхпроводника одновременно. В металле, который был назван в честь эффекта Яна-Теллера, давление может преобразовывать геометрическую форму молекул в новые электронные конфигурации. Проще говоря, получившееся вещество может легко менять свое состояние на проводник, изолятор, металл и магнитный материал. Свойства подобного материала изменяются в зависимости от расстояния между атомами в кристаллической решетке. Расстояние же меняют с помощью давления, но не обычного механического, а химического.

7. Фотонная материя



В течение многих десятилетий считалось, что фотоны - частицы, не имеющие массы, которые не взаимодействуют друг с другом. Тем не менее, в последние несколько лет исследователи обнаружили новые способы, чтобы придать свету массу и даже создали "легкие молекулы", которые отражаются друг от друга и образовывают связи друг с другом. Это, по сути, первый шаг к созданию светового меча из "Звездных войн".

8. Неупорядоченная гипероднородность


При попытках перевести вещество в новое состояние материи, ученые смотрят на структуру вещества, а также на его свойства. В 2003 году Сальваторе Торквато и Фрэнк Стиллинжер из Принстонского университета предложили новое состояние материи, названное неупорядоченной гипероднородностью. Что самое интересное, они открыли новое состояние вещества после внимательного изучения глаза цыпленка.

Оказалось, что клетки в сетчатке куриного глаза располагаются хаотично, но при этом равномерно. Вещество в подобном состоянии проявляет свойства жидкости и кристалла одновременно. Казалось бы, подобное возможно только в состоянии плазмы, но природа оказалась хитрее. Предполагается, что подобное открытие может помочь в разработке принципиально инновационных устройств для передачи света.

9. Струнно-сетевая жидкость



Какое состояние материи в вакууме космоса? Большинство людей не задумывались над этим вопросом, но в последнее десятилетие ученые Массачусетского технологического института Сяо Ган-Вэнь Цзябао и Гарвард Майкл Левин предположили гипотетическое новое состояние материи, которое может стать ключом к открытию фундаментальных частиц меньше электрона.

Еще в середине 90-х годов группа ученых заявила о возможности существования так называемых "квази-частиц", поскольку в ходе эксперимента электроны проходили между двумя полупроводниками. Это вызвало настоящий переполох, так как квазичастицы действовали так, как будто они имели дробный заряд, что считалось невозможным в физике. На основании этих данных команда предположила, что электрон не является фундаментальной частицей Вселенной, а также что существуют более фундаментальные частицы, которые люди еще не обнаружили. Их работа получила Нобелевскую премию, но позднее было обнаружено, что результаты были вызваны ошибкой в эксперименте.

Идея "квази-частиц" была опровергнута. Но некоторые исследователи не отказались от нее полностью. Вэнь Цзябао и Левин продолжили работу над "квази-частицами" и предположил существование нового состояния материи, известного как струнно-сетевая жидкость, основным свойством которой является квантовая запутанность. В своих работах, Вэнь Цзябао и Левин заявили, что космос заполнен струнными сетями запутанных субатомных частиц.

10. Кварко-глюонная плазма


Изначально Вселенная пребывала в совсем другом состоянии материи, чем сейчас. Считается, что в природе нет свободных кварков, но сразу после Большого Взрыва, свободные кварки и глюоны существовали в течение миллисекунды. В течение этого времени, температура Вселенной была так высока, что кварки и глюоны взаимодействовали друг с другом.

В течение этого периода времени Вселенная полностью состояла из горячей кварко-глюонной плазмы. Кварко-глюонная плазма− состояние материи, в которой высвобожденные цветные кварки и глюоны образуют непрерывную среду (хромоплазму), а также могут распространяться в ней как квазисвободные частицы. Возникает так называемая "цветопроводимость", которая аналогична электропроводимости, возникающей в обычной электронно-ионной плазме.

Одним из недавних открытий является стала в созвездии Лебедя.

Материя" - одно из фундаментальнейших поня­тий философии. Однако в различных философских системах его содержание понимается по-разному. Для идеалистической философии, например, харак­терно то, что она или совсем отвергает существование материи или отрицает ее объективность. Так, выдающийся древнегреческий философ Платон рас­сматривает материю как проекцию мира идей. Сама по себе материя у Платона ничто. Для того, чтобы превратиться в реальность, в ней должна воплотить­ся какая-нибудь идея.

У последователя Платона, Аристотеля, материя тоже существует лишь как возможность, которая превращается в действительность только в результа­те соединения ее с формой. Формы же в конечном итоге берут свое начало от Бога.

У Г. Гегеля материя проявляется в результате дея­тельности абсолютной идеи, абсолютного духа, Именно абсолютный дух, идея порождают материю.

Материя - философская категория для обозначения объективной реальности, кот. дана ч-ку в ощущениях его, которая копируется, фотографируется, отображается, нашими ощущениями, существующая независимо от них. В этом определении выделено 2 признака материи: 1) Признание первичности материи по отношении к сознанию (объективность ощущения) 2) Признание принципиальной познаваемости мира. Ленин разграничивает философское понимание материи и естественнонаучные знания о существующем мире. Ленин способствовал преодолению кризиса в физике, связанного с включением принципа структурности материи и делимости атомов в научную картину мира.

МАТЕРИЯ (по Ленину) – есть философская категория для обозначения объективной реальности, которая дана ч-ку в его ощущениях, которая копируется, фотографируется нашими чувствами, существуя независимо от них. Материя – это субстанция нашего мира. Субстанция – субстрат (некая основа, носитель) + его св-ва. Если раньше материя отождествлялась с атомом, то сейчас открыт электрон и материя относительна, природа бесконечна.

Виды материи : 1) Вещество – вид материи, имеющий массу покоя. Твердое, жидкое, газообразное, плазма. 2) Поле – не имеет массы покоя. Форма материи – совокупность различных материальных объектов и систем, обладающих единой качественной определенностью, проявляющ в общих св-вах и специфич для данной формы материи способов существования. Формы: 1) Социальная (ч-к, человеч общ-во, труд). 2) Биологическая (живая природа). 3) Химическая (атомы). 4) Физическая (низший – атомы, молекулы, поля).

В современной науке широко используется метод структурного анализа , при котором учитывается си­стемность исследуемых объектов. Ведь структурность - это внутренняя расчлененность материаль­ного бытия, способ существования материи. Струк­турные уровни материи образованы из определенно­го множества объектов какого-либо вида и характе­ризуются особым способом взаимодействия между составляющими их элементами. Применительно к трем основным сферам объективной действительно­сти эти уровни выглядят следующим образом:

Неорганическая природа

Живая природа

Общество

1.Субмикроэлементарный

Биологический макромолекулярный

2. Микроэлементарный

Клеточный

3. Ядерный

Микроорганический

Коллективы

4.Атомарный

Органы и ткани

Большие социальные группы (классы, нации)

5. Молекулярный

Организм в целом

Государство (гражданское общество)

6. Макроуровень

Популяция

Системы государства

7. Мегауровень (планеты, звездопланетные системы, галактики)

Биоценоз

Человечество в целом

8. Метауровень (метагалактики)

Биосфера

Ноосфера

Изучение проблем, связанных с философским анализом материи и её свойств является необходимым условием формирования мировоззрения личности, независимо от того, окажется ли оно в конечном счёте материалистическим или идеалистическим.

В свете изложенного достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро- и мегамира.

Разумно такое определение: "...Материя есть объективная реальность, данная нам в ощущении"; "Материя есть философская категория для обозначения объективной реальности, которая дана человеку в ощущениях его, которая копируется, фотографируется, отображается нашими ощущениями, существуя независимо от них". (В первом случае речь идет о материи как категории бытия, онтологической категории, во втором - о фиксирующем ее понятии, категории гносеологической).