Определение момента инерции физического маятника. Определение момента инерции физического маятника по периоду его малых колебании и приведенной длине Вывод формулы для определения момента инерции маятника

МАКСВЕЛЛА

Цель работы : изучение плоского движения твердого тела на примере маятника Максвелла; вычисление момента инерции маятника Максвелла.

Теоретическая часть

В соответствии с основным положением классической механики, любое движения твердого тела может быть представлено как наложение двух простых видов движения: поступательного и вращательного. При поступательном движении все точки тела получают за одинаковые промежутки времени равные по величине и направлению перемещения, вследствие чего скорости и ускорения всех точек в каждый момент времени оказываются одинаковыми. При вращательном движении все точки твердого тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для вращательного движения нужно задать положение в пространстве оси вращения и угловую скорость тела в каждый момент времени.

Представляет интерес сопоставление основных величин и формул механики вращающегося твердого тела и поступательного движения материальной точки. Для удобства такое сопоставление приведено в таблице 6.1. Из таблицы видно, что переход в соотношениях от поступательного движения к вращательному осуществляется заменой скорости на угловую скорость, ускорения на угловое ускорение и т. д.

Таблица 6.1

Поступательное движение Вращательное движение
путь линейная скорость линейное ускорение масса тела импульс тела сила основной закон динамики кинетическая энергия работа угол поворота угловая скорость угловое ускорение момент инерции момент импульса момент силы основной закон динамики кинетическая энергия работа

В данной работе рассматривается плоское движение, т.е. такое, при котором тело одновременно участвует в поступательном и вращательном движениях. Примером плоского движения может служить качение цилиндра по плоскости (рис. 6.1). Это движение можно представить как сумму двух движений поступательного со скоростью и вращательного с угловой скоростью , на рисунке ось вращения проходит перпендикулярно плоскости чертежа. Таким образом, ускорение каждой точки тела складывается из ускорения поступательного движения и ускорения при вращении вокруг оси, проходящей через центр масс. Ускорение поступательного движения одинаково для всех точек тела и равно:

где результирующая всех внешних сил, масса тела. Направление ускорения совпадает с направлением результирующей силы .

Ускорение вращательного движения вокруг оси, проходящей через центр масс тела, равно:

где момент всех внешних сил относительно оси, проходящей через центр масс тела, момент инерции тела относительно той же оси. В данной работе плоское движение тела изучается на примере движения маятника Максвелла. Маятник Максвелла состоит из металлического стержня оси AB с симметрично закрепленным на нем диском С (рис. 6.2). К концам оси прикреплены две нити, предварительно намотанные на ось. Противоположные концы нитей закреплены на верхнем кронштейне. Диск опускается под действием силы тяжести на нитях, которые разматываются до полной длины. Диск, продолжая вращательное движение в том же направлении, наматывает нити на ось, вследствие чего он поднимается вверх, замедляя при этом свое вращение. Дойдя до верхней точки, диск опять будет опускаться вниз и т. д. Диск будет совершать колебания вверх и вниз, поэтому такое устройство и называют маятником. Суть работы заключается в определении момента инерции маятника и сравнении полученных результатов с теоретически рассчитанными по известным формулам.


На ось маятника намотать нить подвески и зафиксировать ее.

Проверить, отвечает ли нижняя грань кольца нулю шкалы на колонке. Если нет, отвинтить верхний кронштейн и отрегулировать его высоту. Привинтить верхний кронштейн.

Нажать кнопку «ПУСК» миллисекундомера (сотового телефона).

В момент прохождения маятником нижней точки остановить миллисекундомер.

Намотать на ось маятника нить подвески, обращая внимание на то, чтобы она наматывалась равномерно, один виток рядом с другим.

Фиксировать маятник, обращая внимание на то, чтобы нить в этом положении не была слишком скручена.

Записать измеренное значение времени падения маятника.

Определить замер времени n = 10 раз.

Определить значение среднего времени падения маятника по формуле:

где n – количество выполненных замеров, t i – значение времени, полученное в i – том замере, t – среднее значение времени падения маятника.

По шкале на вертикальной колонке прибора определить расстояние, проходимое маятником за время падения.

Используя формулу (11) и известные значения диаметров d о и d н , определить диаметр оси вместе с намотанной на нее нитью.

По формуле (10) вычислить массу маятника вместе с кольцом, наложенным в данном опыте. Значения масс отдельных элементов нанесены на них.

По формуле (9) определить момент инерции маятника.

Сравнить с теоретическим значением момента инерции

I теор = I о + I м,

где I о – момент инерции оси, I м - момент инерции маховика, которые вычисляются по следующим формулам:

I о = m o r o 2 / 2 ; I к = m м r м 2 / 2 .

Практические данные:

Длина маятника.

Таблица 1.

l, м t1 t2 t3 t4 t5

Подставив все и вычислив получим:

I 1 =(0.00090±0.00001) кг*м 2 .

Вывод: В ходе работы были определены моменты инерции маятника для разных длин намотанной нити и определены погрешности. Сравнение результатов расчётов и экспериментальное значение обнаруживает значительное различие данных.


Вывод: Мы определили экспериментальный и теоретический моменты инерции маятника, которые составили

и сравнили их

1.1. Движение маятника Максвелла представляет собой пример плоского движения твердого тела, при котором траектории всех его точек лежат в параллельных плоскостях. Это движение может быть сведено к поступательному движению маятника и вращательному движению вокруг оси, проходящей через его центр масс перпендикулярно этим плоскостям.

Такой тип движения широко распространен в технике: качение цилиндра по плоскости, колеса автомобиля, катка дорожной машины, движение вращающегося винта вертолета и т. д.

1.2. Целью настоящей лабораторной работы является экспериментальное ознакомление с плоским движением твердого тела на примере маятника Максвелла и определение момента инерции маятника.

2. ОСНОВНЫЕ ПОНЯТИЯ

2.1. Маятник Максвелла представляет собой небольшой маховик. Он может опускаться под действием силы тяжести и силы натяжения нитей, предварительно намотанных на ось маятника (рис.1). Нити во время движения вниз разматываются полностью. Раскрутившийся маховик продолжает вращаться в том же направлении и наматывает нити на ось, вследствие чего поднимается вверх, замедляя при этом свое движение. Дойдя до верхней точки -опять начинает опускаться вниз.

Маховик совершает периодически повторяющееся движение, поэтому он получил название маятника. Итак, движение маятника Максвелла можно разделить на две стадии: опускание и подъем.

2.2. Согласно основным законам динамики поступательного и вращательного движения (для соответственных осей), пренебрегая силами трения о воздух и отклонением нитей от вертикали, запишем

где m - масса маятника, I - момент инерции маятника относительно оси, - радиус оси маятника, N - сила натяжения каждой нити, g - ускорение свободного падения, a - линейное ускорение центра масс маятника, - угловое ускорение. Вследствие нерастяжимости нитей

Эти уравнения применимы как к первой, так и ко второй стадиям движения маятника. Начальные условия на разных стадиях различны: при опускании маятника начальная скорость его центра масс равна нулю, при его подъеме она отлична от нуля.

2.3.Из уравнений (1), (2), (3) следует

(5)

Из зависимости пути от времени при равноускоренном движении с нулевой начальной скоростью можно найти линейное ускорение маятника

где t - время движения маятника от верхней до нижней точки, h - расстояние, проходимое за это время. При имеем ; (7)

Отметим, что направления линейного ускорения и сил натяжения не зависят от того, куда движется маятник - вверх или вниз. За одно полное колебание линейная скорость меняет своё направление в нижней точке на противоположное, а линейное ускорение и силы не меняют. Угловая же скорость, наоборот, не меняет своего направления, а момент сил и угловое ускорение в нижней точке меняют на противоположные.

2.4.При подъеме вверх маятник движется равнозамедленно. Высота h2 , на которую он поднимется, будет меньше, чем та, с которой опускается h1 . Разность этих высот определяет убыль механической энергии, затраченной на преодоление сил деформации нитей при ударе и сил сопротивления движению.

Доля потерянной механической энергии

(9)

ОПИСАНИЕ УСТАНОВКИ

3.1. Схема установки изображена на рис. 2. В основании 1 закреплена колонка 2, на ней держится верхний кронштейн 3, на котором находится электромагнит 4, фотоэлектрический датчик 5 и вороток 6 для выравнивания подвески маятника. К нижнему кронштейну прикреплен второй фотоэлектрический датчик 7. Маховик маятника Максвелла состоит из диска 8, насаженного на ось 9, и прикреплённого к нему массивного кольца 10. Он подвешен на двух параллельных нитях, намотанных на ось. Маятник удерживается в верхнем положении электромагнитом. Высоты опускания и подъёма маятника определяются по миллиметровой линейке 11, находящейся на колонке прибора. Миллисекундомер МС 12 предназначен для измерения времени t движения маятника Максвелла. Начало и окончание отсчёта времени осуществляются автоматически с помощью фотодатчиков, упомянутых выше.

Определение момента инерции маятника Максвелла производится косвенным образом.

Из уравнений (6) и (8) следует, что момент инерции можно рассчитать по формуле

Здесь m – полная масса маятника,

m = m о + m д + m K , (11)

где m о - масса оси, m д - масса диска,.

4. ПОРЯДОК ИЗМЕРЕНИЙ

4.1. Технические данные.

4.1.1. Внести данные установки в табл. 1.

Таблица 1

4.1.2. Занести в табл. 2 значения масс и диаметров элементов маятника. Эти данные указаны на установке.

Таблица 2

4.3. Определение момента инерции маятника Максвелла.

4.2.2. На ось маятника симметрично, виток к витку, намотать нити подвески и зафиксировать маятник. Работать следует очень аккуратно.

4.2.3. Отпустить маятник и запустить отсчёт времени. В нижней точке отсчёт остановить.

4.2.5. Измеренное значение времени движения маятника занести в табл.3. Повторяя операции по пунктам 4.2.2 и 4.2.3, провести измерение времени еще 10 раз и данные занести в табл. 3.

Таблица 3

4.3. Определение убыли механической энергии

4.3.1. По линейке определить высоту h 1 , с которой опускается маятник; занести в табл. 3.

4.3.2. Повторить операции, описанные в п. 4.2.2 и 4.2.3, дать маятнику совершить пять полных колебаний, измерить разность высот d h . Это измерение произвести 1 раз и занести его результат в табл. 3.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

5.1. Определение момента инерции маятника Максвелла.

Вычислить среднее значение времени движения маятника и занести в табл. 3.

Вычислить среднюю квадратичную ошибку в измерении времени движения маятника

(12)

5.1.3. Вычислить абсолютную случайную ошибку

D t сл = 2,1 DS . (13)

5.1.4. Вычислить полную абсолютную ошибку

D t = D t сл + D t приб. (14)

5.1.5. Вычислить относительную ошибку

все вычисленные величины поместить в табл. 3.

5.1.6. По формуле (10) вычислить момент инерции маятника, подставляя в качестве его среднее значение.

5.1.7. Вычислить относительную ошибку момента инерции маятника

, (16)

где D m , D rо , D h1 - приборные погрешности соответственных величин, Dt – полная абсолютнаяпогрешность времени движения; m - суммарная масса маятника, вычисленная по формуле (11).

5.1.8. По полученному значению e J рассчитать величину абсолютной ошибки DJ в определении момента инерции

DJ = e J ·J = . (17)

Округлить DJ до одной значащей цифры, а значения `J до разряда абсолютной ошибки.

5.1.9. Окончательный результат записать в виде

J =`J ± D J = (±) кг × м 2 . (18)

5.2. Определение убыли механической энергии при движении маятника Максвелла.

5.2.1. Формула (9) выражает долю механической энергии, потерянной за пять колебаний маятника Максвелла; за одно колебание доля будет в пять раз меньше:

6. ВОПРОСЫ, выносимые на ЗАЩИТУ РАБОТЫ

1. Основной закон динамики поступательного движения.

3. Как изменяются импульс и осевой момент импульса маятника Максвелла в нижней точке его движения? Объясните причины.

4. Закон сохранения полной энергии для маятника Максвелла.

5. Найти линейную и угловую скорости маятника в нижней точке.

6. Момент инерции твердого тела (определение). От чего зависит его величина?

7. Найти отношение кинетической энергии поступательного движения к кинетической энергии вращательного движения для данного маятника Максвелла.

8. Как меняются линейное и угловое ускорения за период движения маятника Максвелла?

9. Импульс и осевой момент импульса твердого тела.

10. Оценить натяжение нитей при прохождении маятником нижней точки (продолжительность “удара” в ней принять равной Dt »0,05c).

11. Как изменится время движения маятника, если радиус его оси увеличить в два раза?

12. Кинетическая энергия поступательного и вращательного движения твердого тела.

13. Расчет момента инерции диска радиусом R , массой m

14. Какие силы и моменты сил действуют на маятник Максвелла при его движении? Как они изменяются за период?

15. Расчет момента инерции кольца радиусом R , массой m относительно оси, проходящей через центр перпендикулярно его плоскости.

16. Получить формулу (10), исходя из закона сохранения механической энергии. (Учесть, что для маятника Максвелла Е к вр >>Е к пост ).

17. На каком участке движения маятника, верхнем или нижнем, потери механической энергии больше? Объяснить причины.

Приборы и принадлежности: маятник Максвелла со сменными кольцами, секундомер, масштабная линейка, штангенциркуль.

Цель работы: изучение закона сохранения энергии и определение момента инерции маятника.

Маятник Максвелла представляет собой диск 6, закреплённый на стержне 7, подвешенном на бифилярном подвесе 5 к кронштейну 2. На диск крепятся сменные кольца 8. Верхний кронштейн 2, установленный на вертикальной стойке 1, имеет электромагнит и устройство 4 для регулировки бифилярного подвеса. Маятник со сменными кольцами фиксируется в верхнем исходном положении с помощью электромагнита.

На вертикальной стойке 1 нанесена миллиметровая шкала, по которой определяется ход маятника. На нижнем кронштейне 3 находится фотоэлектрический датчик 9. Кронштейн обеспечивает возможность перемещения фотодатчика вдоль вертикальной стойки и его фиксирования в любом положении в пределах шкалы 0-420 мм. Фотодатчик предназначен для выдачи электрических сигналов на миллисекундомер 10 в момент пересечения свето­вого луча диском маятника.

    1. Вертикальная стойка 2. Верхний кронштейн 3. Нижний кронштейн 4. Устройство для регулировки бифилярного подвеса 5. Бифилярный подвес 6. Диск 7. Стержень 8. Сменные кольца 9. Фотоэлектрический датчик 10. Миллисекундомер

Принцип работы маятника Максвелла основан на том, что маятник массой m, подня­тый на высоту h путём накручивания нитей подвеса на стержень маятника, будет иметь EP = mgh. После отключения электромагнита маятник начинает раскручиваться, и его потенциальная энергия EP будет переходить в кинетическую энер­гию поступательного движения EK = mv2/2 и энергию вращательного движения EВР = Iw2/2 . На основании закона сохранения механической энергии (если пренебречь потерями на трение)

M g h = m v2 / 2 + I w2 / 2 (1)

Где h — ход маятника; v — скорость маятники в момент пересечения оптической оси фо­тодатчика; I — момент инерции маятника; w — угловая скорость маятника в тот же мо­мент времени.

Из уравнения (1) получаем:

I = m v2 w -2 (2g h v -2 — 1)

Учитывая, что v = RСТ w, v2 = 2ah, где RСТ — радиус стержня, a — ускорение, с которым опускается маятник, получаем экспериментальное значение момента инерции маят­ника:

IЭКСП = m R2СТ (0,5 g t2 h -1 — 1) = m R2СТ a -1 (g — a) (2)

Где t — время хода маятника.

Теоретическое значение момента инерции маятника относительно оси маятника оп­ределяется по формуле: (3)

IТ = IСТ + IДИСКА + IКОЛЬЦА = 0,5

Где mCT — масса стержня, mCT = 29 г; mg — масса диска, насаженного на стержень,

Mg = 131 г; mKi — масса сменного кольца; Rg — внешний радиус диска; RK — внешний радиус кольца.

При учёте работы, совершаемой маятником против сил трения, уравнение (1) примет вид:

M g h = m v2 / 2 + I w2 / 2 + А

Где A — работа против сил трения.

Эту работу можно оценить по изменению высоты первого подъёма маятника. Счи­тая, что работа при спуске и подъёме одинакова, получим:

Где Dh — изменение высоты наивысшего положения маятника в первом цикле спуск-подъём. Тогда считая, что DI — оценка величины, на которую завышается экспериментально определённое зна­чение IЭКСП без учёта потери энергии на трение, получим:

DI / IЭКСП = Dh / 2h + 1 / (1 — (a / g)) (4)

Расчеты, сопутствующие вычисления и данные:

RCT = 0,0045 [м] mCT = 0,029 [кг]

RДИСКА = 0,045 [м] mДИСКА = 0,131 [кг]

RКОЛЬЦА = 0,053 [м] mКОЛЬЦА = 0,209 [кг]

№ 1 2 3 4 k = tgj = h / t2CP = 0,268 / 9,6 » 0,028 [м/ c2]

TCP, c 3,09 2,73 2,46 3,39 a = 2k = 2 · 0,028 = 0,056 [м/ c2]

T2CP, c2 9,6 7,5 6,1 11,5

K, м/c2 0,028 0,029 0,027 0,027

IЭКСП = (mCT + mДИСКА + mКОЛЬЦА) R2СТ a -1 (g — a)

IЭКСП = [(0,029 + 0,131 + 0,209) · (0,0045)2 · (9,8 — 0,056)] / 0,056 » 0,0013 [кг · м2]

IТ = 0,5

IТ = 0,5 » 0,0006 [кг · м2]

H = 0,5

H = 0,5 = 0,028 [м]

Нетрудно показать, что любое движения твердого тела (например, движение космонавта на тренировочных центрифугах и т.д.) может быть представлено как наложение двух простых видов движения: поступательного и вращательного.

При поступательном движении все точки тела получают за одинаковые промежутки времени равные по величине и направлению перемещения, вследствие чего скорости и ускорения всех точек в каждый момент времени оказываются одинаковыми.

При вращательном движении все точки твердого тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для вращательного движения нужно задать положение в пространстве оси вращения и угловую скорость тела в каждый момент времени.

Представляет интерес сопоставление основных величин и формул механики вращающегося твердого тела и поступательного движения материальной точки. Для удобства такого сопоставления в таблице 1 слева приведены величины и основные соотношения для поступательного движения, а справа - аналогичные для вращательного движения.

Таблица 1

Поступательное движение Вращательное движение
S - путь - линейная скорость - линейное ускорение m - масса тела - импульс тела - сила Основной закон динамики: Кинетическая энергия: - работа - поворот - угловая скорость - угловое ускорение J - момент инерции - момент импульса - момент силы Основной закон динамики: Кинетическая энергия: - работа

Из таблицы видно, что переход в соотношениях от поступательного движения к вращательному осуществляется заменой скорости - на угловую скорость, ускорения - на угловое ускорение и т.д.

В данной работе рассматривается плоское движение, т.е. такое, при котором под действием внешних сил все точки тела перемещаются в параллельных плоскостях. Примером плоского движения может служить качение цилиндра по плоскости.

Это движение можно представить как сумму двух движений - поступательного со скоростью и вращательного с угловой скоростью .

Назвав систему отсчета, относительного которой мы рассматриваем сложное движение твердого тела, неподвижной, движение тела можно представить как вращение с угловой скоростью . В системе отсчета, которая движется относительно неподвижной системы поступательно со скоростью .

Таким образом, ускорение каждой точки тела складывается из ускорения поступательного движения и ускорения при вращении вокруг оси, проходящей через центр масс. Ускорение поступательного движения одинаково для всех точек тела и равно

где - момент всех внешних сил относительно оси, проходящей через центр масс тела,

- момент инерции тела относительно той же оси.

В данной работе плоское движение тела изучается на примере движения маятника Максвелла.

Маятник Максвелла состоит из плоского металлического стержня - оси AB с симметрично закреплены на нем диском С (рис. 1). К концам оси прикреплены две нити, предварительно намотанные на ось. Противоположные концы нитей закреплены на верхнем кронштейне. Диск опускается под действием силы тяжести на нитях, которые разматываются до полной длины. Диск, продолжая вращательное движение в том же направлении, наматывает нити на ось, вследствие чего он поднимается вверх, замедляя при этом свое вращение. Дойдя до верхней точки, диск опять будет опускаться вниз и т.д. Диск будет совершать колебания вверх и вниз, поэтому такое устройство и называют маятником. Суть работы заключается в измерении момента инерции маятника и сравнение полученных результатов с теоретически рассчитанными по известным формулам.

Составим уравнение поступательного движения маятника без учета сил трения о воздух (см. рис. 1)

где - радиус оси;

Сила натяжения одной нити.

Поступательное и вращательное ускорения связаны соотношением

Из уравнений (4.3), (4.4), (4.5) и (4.6) выразим момент инерции маятника Максвелла:

где - момент инерции оси маятника;

m о - масса оси;

Момент инерции диска маятника;

Внешний радиус диска;

m Д - масса диска;

Момент инерции только сменного кольца;

Внешний радиус кольца;

m к - масса кольца.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Общий вид установки представлен на рис. 2.

На вертикальной стойке основания 1 крепятся два кронштейна: верхний 2 и нижний 3. Верхний кронштейн снабжен электромагнитами и устройством 4 для крепления и регулировки бифилярного подвеса 5. Маятник представляет собой диск 6, закрепленный на оси 7, подвешенной на бифилярном подвесе. На диск крепятся сменные кольца 8. Маятник со сменными кольцами фиксируется в верхнем исходном положении с помощью электромагнита.

На вертикальной стойке нанесена миллиметровая шкала, по которой определяется ход маятника.

Датчик фотоэлектрический 9 представляет собой отдельную сборку, закрепленную с помощью кронштейна 3 в нижней части вертикальной стойки. Кронштейн обеспечивает возможность перемещения фотодатчика вдоль вертикальной стойки и его фиксирования в любом положении в пределах шкалы 0 - 420 мм.

Фотодатчик 9 предназначен для выдачи электрических сигналов на миллисекундомер физический 10. Миллисекундомер выполнен самостоятельным прибором с цифровой индикацией времени. Он жестко закреплен на основании 1.

МЕТОДИКА ЭКСПЕРИМЕНТА И ОБРАБОТКА РЕЗУЛЬТАТОВ

Задание 1 . Определить параметры маятника Максвелла.

1. Нарисовать табл. 1.

Таблица 1

Ось маятника Диск маятника Кольца
R o , м L o , м R Д, м L Д, м R к1 , м R к2 , м R к3 , м
Средние значения
V o = m o = V Д = m Д =

2. С помощью штангенциркуля измерить R и L , рассчитать объемы оси и диска V o иV Д.

3. Используя табличные значения плотности металла (алюминия), из которого изготовлены ось и диск, рассчитать значения масс m o иm Д. Полученные результаты занести в табл. 1.

4. Измерить штангенциркулем значения R к (для трех колец) и занести в табл. 1. Определить средние значения.

Задание 2 . Определить момент инерции маятника

1. Нарисовать табл. 2.

2. По шкале, пользуясь указателем кронштейна 3, определить ход маятника h .

Таблица 2

m к1 = кг; h = м;
t , с t ср, с
m к 2 = кг;
t , с t ср, с
m к 3 = кг;
t , с t ср, с

3. Нажать кнопку «Сеть», расположенную на лицевой панели миллисекундомера, при этом должны загореться лампочка фотодатчика и цифровые индикаторы миллисекундомера.

4. Вращая маятник зафиксировать его в верхнем положении при помощи электромагнита, при этом необходимо следить за тем, чтобы нить наматывалась на ось виток к витку.

5. Нажать на кнопку «Сброс» для того, чтобы убедиться, что на индикаторах устанавливаются нули.

6. При нажатии кнопки «Пуск» на миллисекундомере, электромагнит должен обесточится, маятник должен начать раскручиваться, миллисекундомер должен произвести отсчет времени, а в момент пересечения маятником оптической оси фотодатчика счет времени должен прекратиться.

7. Испытания по пунктам 4 - 6 провести не менее пяти раз и определить среднее значение времени t .

8. Определить момент инерции маятника по формуле (4.7).

9. Испытания по пунктам 4 - 6 провести для трех сменных колец.

10. Все полученные результаты занести в таблицу. Определить средние значения.

12. Сравнить теоретические значения момента инерции маятника (4.8) с опытными значениями.

Контрольные вопросы

1. Что называется плоскопараллельным движением?

2. Из каких двух движений складывается сложное движение маятника? Опишите их.

3. Докажите, что маятник совершает движение с постоянным ускорением центра масс.

4. Дайте определение момента инерции. Запишите выражение момента инерции диска, кольца.

5. Сформулируйте закон сохранения механической энергии. Запишите его в применении к маятнику Максвелла.

ВЫВОД РАСЧЕТНОЙ ФОРМУЛЫ

Физическим маятником называется твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси О , не проходящей через центр масстела точку С (рис. 2.1).

Если маятник выведен из положения равновесия на некоторый угол j , то составляющая силы тяжести уравновешивается силой реакции оси О , а составляющая стремится возвратить маятник в положение равновесия. Все силы приложены к центру масс тела. При этом

. (2.1)

Знак минус означает, что угловое смещение j и возвращающая сила имеют противоположные направления. При достаточно малых углах отклонения маятника из положения равновесия sinj » j , поэтому F t » -mgj . Поскольку маятник в процессе колебаний совершает вращательное движение относительно оси О , то оно может быть описано основным законом динамики вращательного движения

где М – момент силы F t относительно оси О , I – момент инерции маятника относительно оси О , – угловое ускорение маятника.

Момент силы в данном случае равен

M = F t ×l = mgj×l , (2.3)

где l – расстояние между точкой подвеса и центром масс маятника.

С учетом (2.2) уравнение (2.3) можно записать

(2.4)

где .

Решением дифференциального уравнения (2.5) является функция, позволяющая определить положение маятника в любой момент времени t ,

j=j 0 × cos(w 0 t+a 0) . (2.6)

Из выражения (2.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с амплитудой колебаний j 0 , циклической частотой , начальной фазой a 0 и периодом, определяемым по формуле

где L=I/(mg) – приведенная длина физического маятника, т. е. длина такого математического маятника, период которого совпадает с периодом физического маятника. Формула (2.7) позволяет определить момент инерции твердого тела относительно любой оси, если измерен период колебаний этого тела относительно этой оси. Если физический маятник имеет правильную геометрическую форму и его масса равномерно распределена по всему объему, в формулу (2.7) можно подставить соответствующее выражение для момента инерции (Приложение 1).

В эксперименте исследуется физический маятник, называемый оборотным и представляющий собой тело, колеблющееся вокруг осей, расположенных на разном расстоянии от центра тяжести тела.

Оборотный маятник состоит из металлического стержня, на котором неподвижно укреплены опорные призмы О 1 и О 2 и две подвижные чечевицы А и B , которые могут закрепляться в определённом положении с помощью винтов (рис. 2.2).

Физический маятник совершает гармонические колебания при малых углах отклонения от положения равновесия . Период таких колебаний определяется соотношением (2.7)

,

где I – момент инерции маятника относительно оси вращения, m – масса маятника, d – расстояние от точки подвеса до центра масс, g – ускорение силы тяжести.

Применяемый в работе физический маятник имеет две опорные призмы О 1 и О 2 для подвешивания. Такой маятник называется оборотным.

Сначала маятник подвешивают на кронштейн опорной призмой О 1 и определяют период колебаний Т 1 относительно этой оси:

(2.8)

Затем маятник подвешивают призмой О 2 и определяют Т 2:

Таким образом, моменты инерции I 1 и I 2 О 1 и О 2 , будут соответственно равны и . Масса маятника m и периоды колебаний Т 1 и Т 2 могут быть измерены с высокой степенью точности.

По теореме Штейнера

где I 0 – момент инерции маятника относительно оси, проходящей через центр тяжести. Таким образом, момент инерции I 0 можно определить,зная моменты инерции I 1 и I 2 .

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Снимите маятник с кронштейна, поместите его на трёхгранную призму так, чтобы расстояния от опоры до призм О 1 и О 2 не были равны между собой. Передвигая чечевицу вдоль стержня, установите маятник в положение равновесия, после чего закрепите чечевицу винтом.

2. Измерьте расстояние d 1 от точки равновесия (центр масс С ) до призмы О 1 и d 2 – от С до призмы О 2 .

3. Подвесив маятник опорной призмой О 1 , определите период колебаний , где N – число колебаний (не более 50 ).

4. Аналогичным образом определите период колебаний Т 2 относительно оси, проходящей через ребро призмы О 2 .

5. Подсчитайте моменты инерции I 1 и I 2 относительно осей, проходящих через опорные призмы О 1 и О 2 , по формулам и , измерив массу маятника m и периоды колебаний Т 1 и Т 2 . Из формул (2.10) и (2.11) определите момент инерции маятника относительно оси, проходящей через центр тяжести (масс) I 0 . Из двух опытов найдите среднее < I 0 > .