Что значит нерациональное число. Иррациональные числа, определение, примеры. Алгебраические и трансцендентные

Множество всех натуральных чисел обозначают буквой N. Натуральные числа, это числа которые мы используем для счета предметов: 1,2,3,4, … В некоторых источниках, к натуральным числам относят также число 0.

Множество всех целых чисел обозначается буквой Z. Целые числа это все натуральные числа, нуль и отрицательные числа:

1,-2,-3, -4, …

Теперь присоединим к множеству всех целых чисел множество всех обыкновенных дробей: 2/3, 18/17, -4/5 и та далее. Тогда мы получим множество всех рациональных чисел.

Множество рациональных чисел

Множество всех рациональных чисел обозначается буквой Q. Множество всех рациональных чисел (Q) - это множество, состоящее из чисел вида m/n, -m/n и числа 0. В качестве n,m может выступать любое натуральное число. Следует отметить, что все рациональные числа, можно представить в виде конечной или бесконечной ПЕРЕОДИЧЕСКОЙ десятичной дроби. Верно и обратное, что любую конечную или бесконечную периодическую десятичную дробь можно записать в виде рационального числа.

А как же быть например с числом 2.0100100010… ? Оно является бесконечно НЕПЕРЕОДИЧСЕКОЙ десятичной дробью. И оно не относится к рациональным числам.

В школьном курсе алгебры изучаются только вещественные (или действительные) числа. Множество всех действительных чисел обозначается буквой R. Множество R состоит из всех рациональных и всех иррациональных чисел.

Понятие иррациональных чисел

Иррациональные числа - это все бесконечные десятичные непериодические дроби. Иррациональные числа не имеют специального обозначения.

Например, все числа полученные извлечением квадратного корня из натуральных чисел, не являющихся квадратами натуральных чисел - будут иррациональными. (√2, √3, √5, √6, и т.д.).

Но не стоит думать, что иррациональные числа получаются только извлечением квадратных корней. Например, число «пи» тоже является иррациональным, а оно получено делением. И как вы не старайтесь, вы не сможете получить его, извлекая квадратный корень из любого натурального числа.


Материал этой статьи представляет собой начальную информацию про иррациональные числа . Сначала мы дадим определение иррациональных чисел и разъясним его. Дальше приведем примеры иррациональных чисел. Наконец, рассмотрим некоторые подходы к выяснению, является ли заданное число иррациональным или нет.

Навигация по странице.

Определение и примеры иррациональных чисел

При изучении десятичных дробей мы отдельно рассмотрели бесконечные непериодические десятичные дроби. Такие дроби возникают при десятичном измерении длин отрезков, несоизмеримых с единичным отрезком. Также мы отметили, что бесконечные непериодические десятичные дроби не могут быть переведены в обыкновенные дроби (смотрите перевод обыкновенных дробей в десятичные и обратно), следовательно, эти числа не являются рациональными числами , они представляют так называемые иррациональные числа.

Так мы подошли к определению иррациональных чисел .

Определение.

Числа, которые в десятичной записи представляют собой бесконечные непериодические десятичные дроби, называются иррациональными числами .

Озвученное определение позволяет привести примеры иррациональных чисел . Например, бесконечная непериодическая десятичная дробь 4,10110011100011110000… (количество единиц и нулей каждый раз увеличивается на одну) является иррациональным числом. Приведем еще пример иррационального числа: −22,353335333335… (число троек, разделяющих восьмерки, каждый раз увеличивается на две).

Следует отметить, что иррациональные числа достаточно редко встречаются именно в виде бесконечных непериодических десятичных дробей. Обычно они встречаются в виде , и т.п., а также в виде специально введенных букв. Самыми известными примерами иррациональных чисел в такой записи являются арифметический квадратный корень из двух , число «пи» π=3,141592… , число e=2,718281… и золотое число .

Иррациональные числа также можно определить через действительные числа , которые объединяют рациональные и иррациональные числа.

Определение.

Иррациональные числа – это действительные числа, не являющиеся рациональными.

Является ли данное число иррациональным?

Когда число задано не в виде десятичной дроби, а в виде некоторого , корня, логарифма и т.п., то ответить на вопрос, является ли оно иррациональным, во многих случаях достаточно сложно.

Несомненно, при ответе на поставленный вопрос очень полезно знать, какие числа не являются иррациональными. Из определения иррациональных чисел следует, что иррациональными числами не являются рациональные числа. Таким образом, иррациональными числами НЕ являются:

  • конечные и бесконечные периодические десятичные дроби.

Также не является иррациональным числом любая композиция рациональных чисел, связанных знаками арифметических операций (+, −, ·, :). Это объясняется тем, что сумма, разность, произведение и частное двух рациональных чисел является рациональным числом. Например, значения выражений и являются рациональными числами. Здесь же заметим, что если в подобных выражениях среди рациональных чисел содержится одно единственное иррациональное число, то значение всего выражения будет иррациональным числом. Например, в выражении число - иррациональное, а остальные числа рациональные, следовательно - иррациональное число. Если бы было рациональным числом, то из этого следовала бы рациональность числа , а оно не является рациональным.

Если же выражение, которым задано число, содержит несколько иррациональных чисел, знаки корня, логарифмы, тригонометрические функции, числа π , e и т.п., то требуется проводить доказательство иррациональности или рациональности заданного числа в каждом конкретном случае. Однако существует ряд уже полученных результатов, которыми можно пользоваться. Перечислим основные из них.

Доказано, что корень степени k из целого числа является рациональным числом только тогда, когда число под корнем является k-ой степенью другого целого числа, в остальных случаях такой корень задает иррациональное число. Например, числа и - иррациональные, так как не существует целого числа, квадрат которого равен 7 , и не существует целого числа, возведение которого в пятую степень дает число 15 . А числа и не являются иррациональными, так как и .

Что касается логарифмов, то доказать их иррациональность иногда удается методом от противного. Для примера докажем, что log 2 3 является иррациональным числом.

Допустим, что log 2 3 рациональное число, а не иррациональное, то есть его можно представить в виде обыкновенной дроби m/n . и позволяют записать следующую цепочку равенств: . Последнее равенство невозможно, так как в его левой части нечетное число , а в правой части – четное. Так мы пришли к противоречию, значит, наше предположение оказалось неверным, и этим доказано, что log 2 3 - иррациональное число.

Заметим, что lna при любом положительном и отличном от единицы рациональном a является иррациональным числом. Например, и - иррациональные числа.

Также доказано, что число e a при любом отличном от нуля рациональном a является иррациональным, и что число π z при любом отличном от нуля целом z является иррациональным. К примеру, числа - иррациональные.

Иррациональными числами также являются тригонометрические функции sin , cos , tg и ctg при любом рациональном и отличном от нуля значении аргумента. Например, sin1 , tg(−4) , cos5,7 , являются иррациональными числами.

Существуют и другие доказанные результаты, на мы ограничимся уже перечисленными. Следует также сказать, что при доказательстве озвученных выше результатов применяется теория, связанная с алгебраическими числами и трансцендентными числами .

В заключение отметим, что не стоит делать поспешных выводов относительно иррациональности заданных чисел. К примеру, кажется очевидным, что иррациональное число в иррациональной степени есть иррациональное число. Однако это не всегда так. В качестве подтверждения озвученного факта приведем степень . Известно, что - иррациональное число, а также доказано, что - иррациональное число, но - рациональное число. Также можно привести примеры иррациональных чисел, сумма, разность, произведение и частное которых есть рациональные числа. Более того, рациональность или иррациональность чисел π+e , π−e , π·e , π π , π e и многих других до сих пор не доказана.

Список литературы.

  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Рациональное число – число, представляемое обыкновенной дробью m/n, где числитель m – целое число, а знаменатель n – натуральное число. Любое рациональное число представимо в виде периодической бесконечной десятичной дроби. Множество рациональных чисел обозначается Q.

Если действительное число не является рациональным, то оно иррациональное число . Десятичные дроби, выражающие иррациональные числа бесконечны и не периодичны. Множество иррациональных чисел обычно обозначается заглавной латинской буквой I.

Действительное число называется алгебраическим , если оно является корнем некоторого многочлена (ненулевой степени) с рациональными коэффициентами. Любое неалгебраическое число называется трансцендентным .

Некоторые свойства:

    Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел Q и множество натуральных чисел N эквивалентны, то есть между ними можно установить взаимно однозначное соответствие (все элементы множества рациональных чисел можно перенумеровать).

    Множество Q рациональных чисел является замкнутым относительно сложения, вычитания, умножения и деления, то есть сумма, разность, произведение и частное двух рациональных чисел также являются рациональными числами.

    Все рациональные числа являются алгебраическими (обратное утверждение – неверное).

    Каждое вещественное трансцендентное число является иррациональным.

    Каждое иррациональное число является либо алгебраическим, либо трансцендентным.

    Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число (а значит, и бесконечное множество иррациональных чисел).

    Множество иррациональных чисел несчётно.

При решении задач бывает удобно вместе с иррациональным числом a + b√ c (где a, b – рациональные числа, с – целое, не являющееся квадратом натурального числа) рассмотреть «сопряжённое» с ним число a – b√ c : его сумма и произведение с исходным – рациональные числа. Так что a + b√ c и a – b√ c являются корнями квадратного уравнения с целыми коэффициентами.

Задачи с решениями

1. Докажите, что

а) число √ 7 ;

б) число lg 80;

в) число √ 2 + 3 √ 3 ;

является иррациональным.

а) Допустим, что число √ 7 рациональное. Тогда, существуют такие взаимно простые p и q, что √ 7 = p/q, откуда получаем p 2 = 7q 2 . Так как p и q взаимно простые, то p 2 , а значит и p делится на 7. Тогда р = 7k, где k – некоторое натуральное число. Отсюда q 2 = 7k 2 = pk, что противоречит тому, что p и q взаимно просты.

Итак, предположение ложно, значит, число √ 7 иррациональное.

б) Допустим, что число lg 80 рациональное. Тогда существуют такие натуральные p и q, что lg 80 = p/q, или 10 p = 80 q , откуда получаем 2 p–4q = 5 q–p . Учитывая, что числа 2 и 5 взаимно простые, получаем, что последнее равенство возможно только при p–4q = 0 и q–p = 0. Откуда p = q = 0, что невозможно, так как p и q выбраны натуральными.

Итак, предположение ложно, значит, число lg 80 иррациональное.

в) Обозначим данное число через х.

Тогда (х – √ 2 ) 3 = 3, или х 3 + 6х – 3 = √ 2· (3х 2 + 2). После возведения этого уравнения в квадрат получаем, что х должен удовлетворять уравнению

х 6 – 6х 4 – 6х 3 + 12х 2 – 36х + 1 = 0.

Его рациональными корнями могут быть только числа 1 и –1. Проверка же показывает, что 1 и –1 не являются корнями.

Итак, данное число √ 2 + 3 √ 3 является иррациональным.

2. Известно, что числа a, b, √ a –√ b , – рациональные. Докажите, что √ a и √ b – тоже рациональные числа.

Рассмотрим произведение

(√ a – √ b )·(√ a + √ b ) = a – b.

Число √ a +√ b , которое равно отношению чисел a – b и √ a –√ b , является рациональным, так как частное от деления двух рациональных чисел – число рациональное. Сумма двух рациональных чисел

½ (√ a + √ b ) + ½ (√ a – √ b ) = √ a

– число рациональное, их разность,

½ (√ a + √ b ) – ½ (√ a – √ b ) = √ b ,

тоже рациональное число, что и требовалось доказать.

3. Докажите, что существуют положительные иррациональные числа a и b, для которых число a b является натуральным.

4. Существуют ли рациональные числа a, b, c, d, удовлетворяющие равенству

(a + b√ 2 ) 2n + (c + d√ 2 ) 2n = 5 + 4√ 2 ,

где n – натуральное число?

Если выполнено равенство, данное в условии, а числа a, b, c, d – рациональные, то выполнено и равенство:

(a – b√ 2 ) 2n + (c – d√ 2 ) 2n = 5 – 4√ 2 .

Но 5 – 4√ 2 (a – b√ 2 ) 2n + (c – d√ 2 ) 2n > 0. Полученное противоречие доказывает то, что исходное равенство невозможно.

Ответ: не существуют.

5. Если отрезки с длинами a, b, c образуют треугольник, то для всех n = 2, 3, 4, . . . отрезки с длинами n √ a , n √ b , n √ c так же образуют треугольник. Докажите это.

Если отрезки с длинами a, b, c образуют треугольник, то неравенство треугольника даёт

Поэтому мы имеем

( n √ a + n √ b ) n > a + b > c = ( n √ c ) n ,

N √ a + n √ b > n √ c .

Остальные случаи проверки неравенства треугольника рассматриваются аналогично, откуда и следует заключение.

6. Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.

Как известно, рациональные числа выражаются десятичными дробями, которые имеют период начиная с некоторого знака. Поэтому достаточно доказать, что данная дробь не является периодической ни с какого знака. Предположим, что это не так, и некоторая последовательность T, состоящая из n цифр, является периодом дроби, начиная с m-го знака после запятой. Ясно, что среди цифр после m-го знака встречаются ненулевые, поэтому в последовательности цифр T есть ненулевая цифра. Это означает, что начиная с m-ой цифры после запятой, среди любых n цифр подряд есть ненулевая цифра. Однако в десятичной записи данной дроби должна присутствовать десятичная запись числа 100...0 = 10 k , где k > m и k > n. Понятно, что эта запись встретится правее m-ой цифры и содержит более n нулей подряд. Тем самым, получаем противоречие, завершающее доказательство.

7. Дана бесконечная десятичная дробь 0,a 1 a 2 ... . Докажите, что цифры в ее десятичной записи можно переставить так, чтобы полученная дробь выражала рациональное число.

Напомним, что дробь выражает рациональное число в том и только том случае, когда она периодическая, начиная с некоторого знака. Цифры от 0 до 9 разделим на два класса: в первый класс включим те цифры, которые встречаются в исходной дроби конечное число раз, во второй класс – те, которые встречаются в исходной дроби бесконечное число раз. Начнем выписывать периодическую дробь, которая может быть получена из исходной перестановкой цифр. Вначале после нуля и запятой напишем в произвольном порядке все цифры из первого класса - каждую столько раз, сколько она встречается в записи исходной дроби. Записанные цифры первого класса будут предшествовать периоду в дробной части десятичной дроби. Далее, запишем в некотором порядке по одному разу цифры из второго класса. Эту комбинацию объявим периодом и будем повторять ее бесконечное число раз. Таким образом, мы выписали искомую периодическую дробь, выражающую некоторое рациональное число.

8. Доказать, что в каждой бесконечной десятичной дроби существует последовательность десятичных знаков произвольной длины, которая в разложении дроби встречается бесконечно много раз.

Пусть m – произвольно заданное натуральное число. Разобьем данную бесконечную десятичную дробь на отрезки, по m цифр в каждом. Таких отрезков будет бесконечно много. С другой стороны, различных систем, состоящих из m цифр, существует только 10 m , т. е. конечное число. Следовательно, хотя бы одна из этих систем должна повторяться здесь бесконечно много раз.

Замечание. Для иррациональных чисел √ 2 , π или е мы даже не знаем, какая цифра повторяется бесконечно много раз в представляющих их бесконечных десятичных дробях, хотя каждое из этих чисел, как легко можно доказать, содержит по крайней мере две различные такие цифры.

9. Докажите элементарным путём, что положительный корень уравнения

является иррациональным.

Для х > 0 левая часть уравнения возрастает с возрастанием х, и легко заметить, что при х = 1,5 она меньше 10, а при х = 1,6 – больше 10. Поэтому единственный положительный корень уравнения лежит внутри интервала (1,5; 1,6).

Запишем корень как несократимую дробь p/q, где p и q – некоторые взаимно простые натуральные числа. Тогда при х = p/q уравнение примет следующий вид:

p 5 + pq 4 = 10q 5 ,

откуда следует, что р – делитель 10, следовательно, р равно одному из чисел 1, 2, 5, 10. Однако выписывая дроби с числителями 1, 2, 5, 10, сразу же замечаем, что ни одна из них не попадает внутрь интервала (1,5; 1,6).

Итак, положительный корень исходного уравнения не может быть представлен в виде обыкновенной дроби, а значит является иррациональным числом.

10. а) Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?

б) Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.

в) Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты - рациональные числа.)

а) Да, существуют. Пусть C – середина отрезка AB. Тогда XC 2 = (2XA 2 + 2XB 2 – AB 2)/2. Если число AB 2 иррационально, то числа XA, XB и XC не могут одновременно быть рациональными.

б) Пусть (a 1 ; b 1), (a 2 ; b 2) и (a 3 ; b 3) – координаты вершин треугольника. Координаты центра его описанной окружности задаются системой уравнений:

(x – a 1) 2 + (y – b 1) 2 = (x – a 2) 2 + (y – b 2) 2 ,

(x – a 1) 2 + (y – b 1) 2 = (x – a 3) 2 + (y – b 3) 2 .

Легко проверить, что эти уравнения линейные, а значит, решение рассматриваемой системы уравнений рационально.

в) Такая сфера существует. Например, сфера с уравнением

(x – √ 2 ) 2 + y 2 + z 2 = 2.

Точка O с координатами (0; 0; 0) – рациональная точка, лежащая на этой сфере. Остальные точки сферы иррациональные. Докажем это.

Допустим противное: пусть (x; y; z) – рациональная точка сферы, отличная от точки O. Понятно, что х отличен от 0, так как при x = 0 имеется единственное решение (0; 0; 0), которое нас сейчас не интересует. Раскроем скобки и выразим √ 2 :

x 2 – 2√ 2 x + 2 + y 2 + z 2 = 2

√ 2 = (x 2 + y 2 + z 2)/(2x),

чего не может быть при рациональных x, y, z и иррациональном √ 2 . Итак, О(0; 0; 0) – единственная рациональная точка на рассматриваемой сфере.

Задачи без решений

1. Докажите, что число

\[ \sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}} \]

является иррациональным.

2. При каких целых m и n выполняется равенство (5 + 3√ 2 ) m = (3 + 5√ 2 ) n ?

3. Существует ли такое число а, чтобы числа а – √ 3 и 1/а + √ 3 были целыми?

4. Могут ли числа 1, √ 2 , 4 быть членами (не обязательно соседними) арифметической прогрессии?

5. Докажите, что при любом натуральном n уравнение (х + у√ 3 ) 2n = 1 + √ 3 не имеет решений в рациональных числах (х; у).

А свои корни они извлекли из латинского слова «ratio», что означает «разум». Исходя из дословного перевода:

  • Рациональное число — это «разумное число».
  • Иррациональное число, соответственно, «неразумное число».

Общее понятие рационального числа

Рациональным числом считается то число, которое можно записать в виде:

  1. Обыкновенной положительной дроби.
  2. Отрицательной обыкновенной дроби.
  3. В виде числа нуль (0).

Иными словами, к рациональному число подойдет следующие определения:

  • Любое натуральное число является по своей сути рациональным, так как любое натуральное число можно представить в виде обыкновенной дроби.
  • Любое целое число, включительно число нуль, так как любое целое число можно записать как ввиде положительной обыкновенной дроби, в виде отрицательной обыкновенной дроби, так и ввиде числа нуль.
  • Любая обыкновенная дробь, и здесь не имеет значение положительная она или отрицательная, тоже напрямую подходит к определению рационального числа.
  • Так же в определение можно отнести и смешанное число, конечную десятичную дробь либо бесконечную периодическую дробь.

Примеры рационального числа

Рассмотрим примеры рациональных чисел:

  • Натуральные числа — «4», «202», «200».
  • Целые числа — «-36», «0», «42».
  • Обыкновенные дроби.

Из вышеперечисленных примеров совершенно очевидно, что рациональные числа могут быть как положительными так и отрицательными . Естественно, число 0 (нуль), которое тоже в свою очередь является рациональным числом, в тоже время не относится к категории положительного или отрицательного числа.

Отсюда, хотелось бы напомнить общеобразовательную программу с помощью следующего определения: «Рациональными числами» — называются те числа, которые можно записать в виде дроби х/у, где х (числитель) — целое число, а у (знаменатель) — натуральное число.

Общее понятие и определение иррационального числа

Помимо «рациональных чисел» нам известны и так называемые «иррациональные числа». Вкратце попробуем дать определение данным числам.

Еще древние математики, желая вычислить диагональ квадрата по его сторонам, узнали о существовании иррационального числа.
Исходя из определения о рациональных числах, можно выстроить логическую цепь и дать определение иррациональному числу.
Итак, по сути, те действительные числа, которые не являются рациональными, элементарно и есть иррациональными числами.
Десятичные дроби же, выражающие иррациональные числа, не периодичны и бесконечны.

Примеры иррационального числа

Рассмотрим для наглядности небольшой пример иррационально числа. Как мы уже поняли, бесконечные десятичные непериодические дроби называются иррациональными, к примеру:

  • Число «-5,020020002… (прекрасно видно, что двойки разделены последовательностью из одного, двух, трех и т.д. нулей)
  • Число «7,040044000444… (здесь ясно, что число четверок и количество нулей каждый раз цепочкой увеличивается на единицу).
  • Всем известное число Пи (3,1415…). Да, да — оно тоже является иррациональным.

Вообще все действительные числа являются как рациональными так и иррациональными. Говоря простыми словами, иррациональное число нельзя представить ввиде обыкновенной дроби х/у.

Общее заключение и краткое сравнение между числами

Мы рассмотрели каждое число по отдельности, осталось отличие между рациональным числом и иррациональным:

  1. Иррациональное число встречается при извлечении квадратного корня, при делении окружности на диаметр и т.д.
  2. Рациональное число представляет обыкновенную дробь.

Заключим нашу статью несколькими определениями:

  • Арифметическая операция, произведенная над рациональным числом, кроме деления на 0 (нуль), в конечном результате приведет тоже к рациональному числу.
  • Конечный результат же, при совершении арифметической операции над иррациональным числом, может привести как к рациональному так и к иррациональному значению.
  • Если же в арифметической операции принимают участие и те и другие числа (кроме деления или умножения на нуль), то результат нам выдаст иррациональное число.

Ранее мы уже показали, что $1\frac25$ — близко к $\sqrt2$. Если бы оно точно равнялось $\sqrt2$, . Тогда соотношение — $\frac{1\frac25}{1}$, которое можно превратить в соотношение целых чисел $\frac75$, умножив верхнюю и нижнюю части дроби на 5, и было бы искомой величиной.

Но, к сожалению, $1\frac25$ не является точной величиной $\sqrt2$. Более точный ответ $1\frac{41}{100}$, дает нам соотношение $\frac{141}{100}$. Еще большей точности мы достигаем, когда приравниваем $\sqrt2$ к $1\frac{207}{500}$. В этом случае соотношение в целых числах будет равно $\frac{707}{500}$. Но и $1\frac{207}{500}$ не является точным значением корня квадратного из 2. Греческие математики потратили массу времени и сил, чтобы вычислить точное значение $\sqrt2$, но это им так и не удалось. Они не смогли представить соотношение $\frac{\sqrt2}{1}$ в виде соотношения целых чисел.

Наконец, великий греческий математик Евклид доказал, что, как бы ни увеличивалась точность подсчетов, получить точное значение $\sqrt2$ невозможно. Не существует такой дроби, которая, будучи возведена в квадрат, даст в результате 2. Говорят, что первым к этому заключению пришел Пифагор, но этот необъяснимый факт настолько поразил ученого, что он поклялся сам и взял со своих учеников клятву хранить это открытие в тайне. Однако, возможно, эти сведения не соответствуют действительности.

Но если число $\frac{\sqrt2}{1}$ не может быть представлено в виде соотношения целых чисел, то и никакая , содержащая $\sqrt2$, например $\frac{\sqrt2}{2}$ или $\frac{4}{\sqrt2}$ также не может быть представлена в виде соотношения целых чисел, поскольку все такие дроби могут быть преобразованы в $\frac{\sqrt2}{1}$, умноженное на какое нибудь число. Так $\frac{\sqrt2}{2}=\frac{\sqrt2}{1} \times \frac12$. Или $\frac{\sqrt2}{1} \times 2=2\frac{\sqrt2}{1}$, что можно преобразовать, умножив верхнюю и нижнюю части на $\sqrt2$, и получить $\frac{4}{\sqrt2}$. (Не следует забывать, что независимо от того, что представляет собой число $\sqrt2$, если мы умножим его на $\sqrt2$, то получим 2.)

Поскольку число $\sqrt2$ нельзя представить в виде соотношения целых чисел, оно получило название иррационального числа . С другой стороны, все числа, которые можно представить в виде соотношения целых чисел, называются рациональными .

Рациональными являются все целые и дробные числа, как положительные, так и отрицательные.

Как оказалось, большинство квадратных корней являются иррациональными числами. Рациональные квадратные корни есть только у чисел, входящих в ряд квадратных чисел. Эти числа называются также идеальными квадратами. Рациональными числами являются также дроби, составленные из этих идеальных квадратов. Например, $\sqrt{1\frac79}$ является рациональным числом, так как $\sqrt{1\frac79}=\frac{\sqrt16}{\sqrt9}=\frac43$ или $1\frac13$ (4 - это корень квадратный из 16, а 3 - корень квадратный из 9).