Сопромат сечения. Внутренние силы. Метод сечений. Задачи и методы сопротивления материалов

Внутри любого материала имеются внутренние межатомные силы, наличие которых определяет способность тела воспринимать действующие на него внешние силы, сопротивляться разрушению, изменению формы и размеров. Приложение к телу внешней нагрузки вызывает изменение (увеличение или уменьшение) внутренних сил, т. е. появление дополнительных внутренних сил.

В сопротивлении материалов изучаются дополнительные внутренние силы. Поэтому под внутренними силами (или внутренними усилиями) в сопротивлении материалов понимают силы взаимодействия между отдельными элементами сооружения или между отдельными частями элемента, возникающие под действием внешних сил. Это понятие равносильно допущению об отсутствии в теле внутренних сил до приложения к нему внешних нагрузок. Поэтому иногда считают, что в сопротивлении материалов принимается гипотеза о ненапряженном начальном состоянии тела.

Рассмотрим элемент конструкции, на который действует система внешних сил, находящихся в равновесии (рис. 4.1, а). Напоминаем, что в число внешних сил входят как заданные активные силы, так и реакции связей. Мысленно рассечем элемент плоскостью . Силы воздействия отсеченной правой части элемента на его левую часть (на правый ее торец) являются по отношению к ней внешними; для всего же элемента в целом они являются внутренними силами. Этим силам (на основании известного закона механики: действие равно противодействию) равны по величине и противоположны по направлению внутренние силы воздействия левой части элемента на правую.

В общем случае пространственной задачи взаимодействие между левой и правой частями элемента можно представить некоторой силой R, приложенной в произвольно выбранной точке О сечения , и моментом М относительно некоторой оси, проходящей через эту точку (рис. 4.1, б, в).

Сила R является главным вектором, а момент М-главным моментом системы внутренних сил, действующих по проведенному сечению.

Определение внутренних сил, возникающих в брусе, обычно производится для сечений, перпендикулярных к его продольной оси, т. е. для поперечных сечений бруса. Точка О принимается расположенной на оси бруса, т. е. совпадающей с центром тяжести его поперечного сечения.

Главный вектор R раскладывается на две составляющие силы: силу N, направленную вдоль оси бруса и называемую продольной силой, и силу Т, действующую в плоскости поперечного сечения и называемую поперечной силой (рис. 5.1, а). Момент М раскладывается на два составляющих момента: момент действующий в плоскости поперечного сечения и называемый крутящим моментом, и момент действующий в плоскости, перпендикулярной к поперечному сечению, и называемый изгибающим моментом (рис. 5.1, б).

Каждому из внутренних усилий соответствует определенный вид Рис. 5.1 деформации бруса. Продольной силе N соответствует растяжение (или сжатие), поперечной силе Т - сдвиг, крутящему моменту - кручение, а изгибающему моменту - изгиб. Различные их сочетания, например сжатие с изгибом, изгиб с кручением и т. п., представляют собой сложные сопротивления.

Внутренние усилия N и характеризуются каждое одним параметром-величиной усилия. Поперечная сила Т характеризуется двумя параметрами, например, величиной этой силы и ее направлением (в плоскости поперечного сечения бруса). Более удобно силу Т определять через составляющие ее поперечные силы параллельные двум взаимно перпендикулярным осям, расположенным в плоскости поперечного сечения бруса (рис. 5.1, а). Изгибающий момент Мн также характеризуется двумя параметрами; его обычно раскладывают на два составляющих изгибающих момента относительно осей z и у.

Таким образом, взаимодействие любых двух частей конструкции характеризуется тремя составляющими главного вектора и тремя составляющими главного момента внутренних сил, возникающих в рассматриваемом поперечном сечении. Эти составляющие называются внутренними силовыми факторами, или внутренними усилиями.

Рассмотрим общий прием определения внутренних усилий, называемый методом сечений.

Рассечем стержень (рис. 6.1, а) плоскостью совпадающей с поперечным сечением стержня. В полученном поперечном сечении в общем случае действует шесть внутренних усилий: (рис. 6.1, б, в).

Правая часть стержня (рис. 6.1, в) находится в равновесии; значит, внешние силы приложенные к ней, уравновешиваются внутренними усилиями, действующими на правую часть. Но те же внешние силы уравновешиваются и нагрузками, приложенными к левой части стержня (силами ), так как весь стержень в целом (рис. 6.1, а) также находится в равновесии. Следовательно, нагрузки, приложенные к левой части стержня (силы ), и внутренние усилия, действующие на правую часть, статически эквивалентны друг другу.

Таким образом, проекция на какую-либо ось внутренних усилий в сеченииу действующих со стороны левой части стержня на правую, равна проекции на эту ось всех внешних сил, приложенных к левой части. Аналогично, момент относительно какой-либо оси внутренних усилий в сечении, действующих со стороны левой части стержня на правую, равен моменту всех внешних сил, приложенных к левой части относительно этой оси.

Из шести внутренних усилий, действующих в поперечном сечении стержня, проекции пяти усилий на каждую из осей равны нулю. Аналогично равны нулю и моменты пяти внутренних усилий относительно каждой из указанных осей. Это позволяет легко определять внутренние усилия в стержне, проектируя на ось х или у, или z все внутренние усилия, действующие на правую часть стержня (рис. 6.1, в), и все внешние силы, приложенные к левой части (рис. 6.1, б), или определяя их моменты относительно одной из указанных осей.

Определим, например, величину продольной силы N в поперечном сечении показанном на рис. 6.1, а. Как следует из рис. 6.1, в, проекция на ось всех внутренних усилий, действующих на правую часть стержня, равна если для проекции положительным считать направление справа налево. Поэтому сила N равна сумме проекций на ось всех внешних сил, действующих на левую часть стержня (т. е. сил - рис. 6.1, б). Аналогично значение, например, крутящего момента в поперечном сечении стержня равно сумме моментов сил (рис. 6.1, б) относительно оси если положительными считать моменты, направленные по часовой стрелке (при взгляде с левого конца оси х на правый), и т. д.

Внутренние силы, действующие в сечении со стороны левой части на правую, можно определить по внешним силам, приложенным не к левой, а к правой части. В этом случае полученные направления проекций внешних сил на выбранные оси и моментов относительно этих осей необходимо изменять на противоположные.

Внутренние усилия в каком-либо сечении обычно определяют по внешним силам, приложенным к той части конструкции (расположенной по одну сторону от рассматриваемого сечения), на которую действует меньше сил.

В теоретической механике, в разделе статики, широко применяется замена системы сил их равнодействующей и перенос силы по линии ее действия. В сопротивлении материалов это не всегда возможно, так как может приводить к неправильным результатам. Например, совершенно очевидно, что при определении внутренних сил в сечении (рис. 6.1, а) замена нескольких сил, приложенных к телу по разные стороны от этого сечения, их равнодействующей недопустима, так как она приведет к изменению величин внутренних сил. По этой же причине недопустим перенос какой-либо силы, приложенной левее сечения по линии ее действия, в точку, расположенную правее этого сечения.


Находящемся в равновесии под действием .

Рассмотрим идеально упругий призматический стержень прямоугольного поперечного сечения (рис. 1.2, а).

Выделим внутри стержня какие-либо две частицы K и L, расположенные на бесконечно малом расстоянии друг от друга. Для большей наглядности предположим, что между этими частицами имеется некоторая пружинка, удерживающая их на определенном расстоянии друг от друга. Пусть натяжение пружинки равно нулю.

Приложим теперь к стержню растягивающую силу (рис. 1.2, б ). Пусть в результате деформации стержня, частица K перейдет в положение , а частица L – в положение . Соединяющая эти частицы пружинка при этом растянется. После снятия внешней нагрузки частицы вернутся в первоначальное положение K и L благодаря усилию, которое возникло в пружинке. Сила, которая возникла между частицами (в пружинке) в результате деформации идеально упругого стержня, называются силой или внутренней силой. Она может быть найдена методом сечений .

Этапы метода сечений

Метод сечений состоит из четырех последовательных этапов: разрезать, отбросить, заменить, уравновесить .

Разрежем стержень, находящийся в равновесии под действием некоторой системы сил (рис. 1.3, а) на две части плоскостью, перпендикулярной к его оси z.

Отбросим одну из частей стержня и рассмотрим оставленную часть.

Поскольку мы как бы разрезали бесчисленное множество пружинок, соединявших бесконечно близкие частицы тела, разделенного теперь на две части, в каждой точке поперечного сечения стержня необходимо приложить силы упругости, которые при деформации тела возникли между этими частицами. Иными словами, заменим действие отброшенной части (рис. 1.3, б).

Внутренние силы в методе сечений

Полученную бесконечную систему сил по правилам теоретической механики можно привести к центру тяжести поперечного сечения. В результате получим главный вектор R и главный момент M (рис. 1.3, в).

Разложим главный вектор и главный момент на составляющие по осям x, y (главные центральные оси) и z.

Получим 6 внутренних силовых факторов , возникающих в поперечном сечении стержня при его деформировании: три силы (рис. 1.3, г) и три момента (рис. 1.3, д).

Сила N - продольная сила

– поперечные силамы,

момент относительно оси z () – крутящий момент

моменты относительно осей x, y () – изгибающие моменты.

Запишем для оставленной части тела уравнения равновесия (уравновесим ):

Из уравнений определяются внутренние усилия, возникающие в рассматриваемом поперечном сечении стержня.

Для того чтобы судить о прочности исследуемого тела, находящегося в равновесии под действием внешних сил, прежде всего необходимо уметь определить вызванные ими внутренние усилия.

Внешние силы деформируют тело; внутренние усилия сопротивляясь этой деформации, стремятся сохранить первоначальную форму и объем тела.

Обнаружение внутренних усилий, их вычисление составляют первую и основную задачу сопротивления материалов, которая решается с помощью метода сечений, сущность этого метода заключается в следующем:

  • - первая операция. Рассекаем (мысленно) стержень по сечению в котором следует определить величину внутренних усилий.
  • - вторая операция. Отбрасываем какую-либо часть стержня, например, часть 1. Обычно отбрасывают ту часть, к которой приложено большее число сил.
  • - третья операция. Заменяем силы, действующие на оставшуюся часть главным вектором и главным моментом, совместив центр приведения О с центром тяжести (ц. т.) сечения (на рис.1,б М не показан).
  • - четвертая операция. Уравновешиваем оставшуюся часть, так как до рассечения она находилась в равновесии. Для этого в точке О прикладываем силу R и момент M, равные и противоположно направленные главному вектору и главному моменту. Усилия и и являются теми внутренними усилиями, которые передавались со стороны отброшенной на оставшуюся часть стержня.
  • - Метод сечений является лишь первым шагом по пути исследования внутренних сил, так как с его помощью не удается выяснить закон распределения внутренних сил в сечении.

Составляя уравнения равновесия для отсечённой части тела, можно получить проекции на координатные оси как главного вектора, так и главного момента.

При расчёте брусьев начало координат помещают в центре тяжести рассматриваемого поперечного сечения его. Ось "Z" в прямом брусе совмещают с его продольной осью, в кривом - направляют по касательной к его оси в точке, где помещено начало координат.

Оси "X" и "Y" совмещают с направлениями главных центральных осей инерции рассматриваемого сечения. Проекции на координатные оси главного вектора и главного момента внутренних сил в брусе обозначают соответственно: , N, M x , M y , и называют внутренними силовыми факторами (внутренними усилиями).

Представляют собой поперечные силы в направлении оси "X" или "Y" (Н)

N - нормальную (продольную) силу (н.).

M x , M y - изгибающие моменты относительно осей соответственно "X" или "Y" (нм)

M z - крутящий момент (нм).

Рассмотрев отсечённую часть бруса (например правую) (рис.1,б) и составив на основании метода сечений уравнения равновесия, можно сказать следующее: нормальная сила N есть сила внутренняя, численно равная сумма проекции на продольную ось бруса всех внешних сил, расположенных по одну сторону от рассматриваемого сечения.

  • -поперечная сила в направлении оси "X" численно равна сумме проекций на ось "X" всех внешних сил, расположенных по одну сторону от рассматриваемого сечения.
  • - поперечная сила в направлении оси "Y" численно равна сумме проекций на ось "Y" всех внешних сил, расположенных по одну сторону от рассматриваемого сечения

M x - изгибающий момент относительно оси "X" численно равна сумме моментов всех внешних сил, расположенных по одну сторону от этого сечения.

M Y - изгибающий момент относительно оси "Y" численно равна сумме моментов всех внешних сил, расположенных по одну сторону от этого сечения.

M z - изгибающий момент относительно оси "Z" численно равна сумме моментов всех внешних сил, расположенных по одну сторону от этого сечения.

Итак, в общем случае нагружения бруса внутренние силы в его поперечных сечениях приводятся к указанным шести внутренним силовым факторам.

Виды нагрузок, типы опор и балок.

Всякий стержень, работающий на изгиб, называется балкой.

Активные силы полагаются известными и сводятся к сосредоточенным силам F(H), парам сил m (нм) и распределенным по длине балки нагрузкам q (н/м). Величина и направление реакций R 1, R 2 определяются из условия равновесия балки и вида её опорных закреплений.

Балки могут иметь следующие три типа опор:

  • 1. Жёсткое защемление или заделка. Конец балки лишён трёх степеней свободы. Он не может перемещаться ни в вертикальном, ни в горизонтальном направлениях и не имеет возможности поворачиваться. Следовательно, в этой опоре возникают три реакции: две силы R 1 и R 2 , препятствующие линейным смещениям конца балки и один реактивный момент M R , препятствующий повороту.
  • 2. Шарнирно-неподвижная опора.

Такая опора лишает балку двух степеней свободы: вертикального и горизонтального смещений, но не препятствует вращению балки вокруг шарнира. Следовательно, в данной опоре возникают две составляющие опорной реакции R 1 и R 2 .

3. Шарнирно-подвижная опора - это наименее жёсткое опирание, она лишает конец балки только одной степени свободы - вертикального линейного перемещения. В шарнирно-подвижной опоре возникает одна реакция.

Следует обратить внимание на то, что данная опора препятствует перемещению конца балки как вниз, так и вверх. Необходимо заметить, что на практике плоскость катания подвижной опоры всегда делают параллельной оси балки. Тогда реакция подвижной опоры должна иметь направление перпендикулярное к оси балки.

Применяя разные виды опор, получаем различные типы балок. Так как балка в плоскости имеет три степени свободы, то для неподвижного закрепления балку необходимо лишить всех трёх степеней свободы.

Первый тип балки - консоль. Консоль имеет на одном конце заделку, отнимающую все три степени свободы, а другой её конец свободный. В заделке возникают: реактивный момент, вертикальная реакция и при наличии горизонтальной или наклонной нагрузки, горизонтальная реакция. Консоль применяется в технике в виде кронштейнов, мачт и т.д.

Второй тип балки - двухопорная балка. Опирание балки в двух точках осуществляется применением одной подвижной и одной неподвижной шарнирных опор, в совокупности отнимающих у балки все три степени свободы. В подвижной опоре возникает только вертикальная реакция, в неподвижной - вертикальная и горизонтальная (при наличии горизонтальных составляющих нагрузок).

Расстояния между опорами называется пролётом. Если одна из опор смещена на некоторое расстояние, то балка называется одноконсольной. Балки перечисляемых типов имеют минимально необходимое число опор, в связи с этим они статически определимы, т.е. их опорные реакции могут быть найдены из уравнения равновесия.

Постановка дополнительных опор делает балку статически неопределимой: расчёт таких балок возможен лишь с учётом их деформаций.

Метод сечений заключается в том что тело мысленно рассекается плоскостью на 2 части, любая из которых отбрасывается и в замен ее к оставшемуся сечению прикладывают силы действующие до разреза, оставленную часть рассматривают как самостоятельное тело, находящееся в равновесии под действием внешних и приложенных к сечению внутренних сил. Согласно 3 му закону Ньютона внутренние силы, действующие в сечении оставшейся и отброшенной частей тела равны по модулю, но противоположны следовательно рассматриваем равновесие любой из 2 частей рассеченного тела мы получили одно и тоже значение внутренних сил.

Изгибом называется вид нагружения бруса, при котором к нему прикладывается момент, лежащий в плоскости проходящей через продольную ось. В поперечных сечениях бруса возникают изгибающие моменты. При изгибе возникают деформация, при которой происходит искривление оси прямого бруса или изменение кривизны кривого бруса.

Брус, работающий при изгибе, называется балкой . Конструкция, состоящая из нескольких изгибаемых стержней, соединенных между собой чаще всего под углом 90°, называется рамой.

Изгиб называется плоским или прямым, если плоскость действия нагрузки проходит через главную центральную ось инерции сечения.

При плоском поперечном изгибе в балке возникают два вида внутренних усилий: поперечная сила Q и изгибающий момент M. В раме при плоском поперечном изгибе возникают три усилия: продольная N, поперечная Q силы и изгибающий момент M.

Если изгибающий момент является единственным внутренним силовым фактором, то такой изгиб называется чистым (рис.6.2). При наличии поперечной силы изгиб называется поперечным . Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; попереч­ный изгиб относят к простым видам сопротивления условно, так как в большинстве слу­чаев (для достаточно длинных балок) действием поперечной силы при расчетах на проч­ность можно пренебречь.

Косой изгиб - изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб - изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

Построение эпюр поперечной силы и изгибающего момента

Для того, чтобы произвести расчет балки на изгиб, необходимо знать величину наибольшего изгибающего момента М и положение сечения, в котором он возникает. Точно также, надо знать и наибольшую поперечную силу Q. Для этой цели строят эпюры изгибающих моментов и поперечных сил. По эпюрам легко судить о том, где будет максимальное значение момента или поперечной силы.



Перед тем, как определять внутренние усилия (поперечные силы и изгибающие моменты) и строить эпюры, как правило, надо найти опорные реакции, возникающие в закреплении стержня. Если опорные реакции и внутренние усилия можно найти из уравнений статики, то конструкция называется статически определимой. Чаще всего мы встречаемся с тремя видами опорных закреплений стержней: жестким защемлением (заделкой), шарнирно-неподвижной опорой и шарнирно-подвижной опорой. На рис. 6.5 показаны эти закрепления. Для неподвижной (рис 6.5,б) и подвижной (рис. 6.5,в) опор приведены два эквивалентных обозначения этих закреплений. Напомним, что при действии нагрузки в одной плоскости в заделке возникают три опорных реакции (вертикальная, горизонтальная реакции и сосредоточенный реактивный момент) (рис. 6.5,а); в шарнирно-неподвижной опоре – две реактивные силы (рис. 6.3,б); в шарнирно-подвижной опоре – одна реакция – сила, перпендикулярная плоскости опирания (рис.6.5,в).

Если внешняя сила вращает отрезанную часть балки по часовой стрелке, то сила является положительной, если внешняя сила вращает отрезанную часть балки против хода часовой стрелки, то сила является отрицательной.

Если под действием внешней силы изогнутая ось балки принимает вид вогнутой чаши, такой, что идущий сверху дождь будет наполнять ее водой, то изгибающий момент является положительным. Если под действием внешней силы изогнутая ось балки принимает вид выпуклой чаши, такой, что идущий сверху дождь не будет наполнять ее водой, то изгибающий момент является отрицательным.

Достаточно очевидно и подтверждается опытом, что балка при изгибе деформируется таким образом, что волокна, расположенные в выпуклой части, растягиваются, а в вогнутой – сжимаются. Между ними лежит слой волокон, который лишь искривляется, не изменяя своей первоначальной длины (рис.6.8). Этот слой называется нейтральным или нулевым, а его след на плоскости поперечного сечения – нейтральной (нулевой) линией или осью.

При построении эпюр Q и М договоримся на эпюре Q положительные значения откладывать сверху нулевой линии. На эпюре М у строителей принято откладывать положительные ординаты снизу. Такое правило построения эпюры М называется построением эпюры со стороны растянутых волокон, т. е. положительные значения М откладываются в сторону выпуклости изогнутой балки.

Рассмотрим для простоты балку с прямоугольным поперечным сечением (рис.6.9). Следуя методу сечений, мысленно проведем разрез и отбросим какую-либо часть балки, а другую оставим. На оставшейся части покажем действующие на нее силы и в поперечном сечении – внутренние силовые факторы, которые являются результатом приведения к центру сечения сил, действующих на отброшенную часть. Учитывая, что внешние силы и распределенные нагрузки лежат в одной плоскости и действуют перпендикулярно оси балки, в сечении получим поперечную силу и изгибающий момент. Эти внутренние силовые факторы заранее неизвестны, поэтому их показывают в положительном направлении в соответствии с принятыми правилами знаков.

Метод сечений и внутренние силовые факторы (ВСФ)

Прочность твердого тела обусловлена силами сцепления между отдельными его частицами (атомами, молекулами и т. п.). В случае нагружения твердого тела внешней нагрузкой (активными и реактивными силами) внутренние силы сцепления изменяются. При этом появляются дополнительные внутренние силы, сопровождающие деформацию тела. Именно эти дополнительные внутренние силы и являются предметом изучения в курсе сопротивления материалов. По мере возрастания внешней нагрузки увеличиваются и внутренние силы, но лишь до определенного предела, при превышении которого наступает разрушение.

Для решения задач сопротивления материалов очень важно уметь определять внутренние силы и деформации стержня. При определении внутренних сил в каком-либо сечении стержня используют метод сечений.

Рассмотрим на конкретном примере сущность метода сечений. Возьмем стержень, находящийся в состоянии равновесия под действием сил Ft, F 2 , F } и F 4 (рис. 3,а). Для определения внутренних сил, действующих в произвольном сечении А, мысленно рассечем стержень и отбросим одну из двух полученных частей, например, правую. Тогда на оставшуюся левую часть стержня будут действовать внешние силы F и F 2 .

Рис. 3. Метод сечений: а) стержень, рассеченный плоскостью;

б) левая отсеченная часть стержня

Для того чтобы эта часть стержня оставалась в равновесии, следует действие отброшенной правой части стержня на оставшуюся левую часть заменить внутренними силами, приложенными по всему сечению (рис. 3, б).

Являясь внутренними силами для целого стержня, эти силы играют роль внешних сил для его левой части.

NB: в дальнейшем силы, возникающие в сечении, будем называть внутренними и в то же время на рисунках изображать их в виде внешних сил.

Распределенные по сечению внутренние силы образуют пространственную систему сил и приводятся к статически эквивалентным им обобщенным усилиям - главному вектору и главному моменту М гл (рис. 4, а).

В сопротивлении материалов, характеризуя усилия в стержне, обычно рассматривают поперечные сечения, а обобщенные усилия представляют в главной координатной системе (при этом ось z направляют по нормали к сечению, а оси х и у располагают в плоскости сечения).

Проецируя главный вектор /? г, на оси координат, получаем три его составляющие: N y Q y и Q x . Проекциями главного момента на координатные оси являются его составляющие: моменты М х, М у и Г, каждый из которых стремится повернуть отсеченную часть стержня вокруг одной из координатных осей. Эти составляющие главного вектора и главного момента на координатные оси называют внутренними силовыми факторами (рис. 4, б).


Рис. 4. Метод сечений: а) приведение системы внутренних сил в сечении к главному вектору и главному моменту; б) разложение главного вектора и главного момента на координатные оси

Внутренними силовыми факторами называются проекции главного вектора и главного момента всех внутренних сил, возникающих в поперечном сечении стержня, на главные координаты оси, помещаемые обычно в центр тяжести сечения.

В общем случае нагружения стержня в его поперечном сечении могут возникать шесть внутренних силовых факторов , которые имеют следующие названия:

S N - продольная (нормальная) сила;

S QyUQ x - поперечные силы;

S М Х 1 Л М у - изгибающие моменты;

S Т - крутящий момент.

При известных внешних силах все шесть внутренних силовых факторов могут быть определены из шести уравнений статики (уравнений равновесия), которые составляются для отсеченной части стержня (правой или левой):

NB: в приведенных условиях равновесия отсеченной части стержня символами F x omc , F y omc и F z ome обозначены проекции внешних сил на соответствующие координатные оси; а символом F° mc - внешние силы.

Рассмотренный метод сечений позволяет перевести внутренние силовые факторы в категорию внешних сил и, подчинив условиям равновесия, определить их величины и направления.

Сущность метода сечений заключается в следующих четырех действиях:

  • 1. Рассечь мысленно стержень плоскостью, перпендикулярной его оси в том месте, где требуется найти внутренние силовые факторы (см. рис. 3, а).
  • 2. Отбросить одну из частей стержня (правую или левую).
  • 3. Заменить действие отброшенной части стержня на оставленную часть искомыми внутренними силовыми факторами (см. рис. 4, б). Равновесие оставленной части не нарушится лишь в том случае, если к ней приложить ВСФ, заменяющие действие отброшенной части. Для оставленной части они будут играть роль внешних сил (см. рис. 3, б).
  • 4. Уравновесить оставленную часть стержня и из условий равновесия оставленной части стержня найти величины и направления внутренних силовых факторов.

От степени усвоения метода сечений зависит успешное изучение и понимание основных вопросов сопротивления материалов. Добиться этого несложно, если при применении метода сечений каждый раз последовательно использовать все четыре указанные операции. При этом следует помнить, что пропуск какой-либо из этих операций неизбежно приведет к ошибкам и недопониманию изучаемого вопроса.

При применении метода сечений должны быть предварительно определены все внешние силы и моменты, приложенные к отсеченной части стержня, в том числе и опорные реакции. Оставленная часть стержня должна рассматриваться как свободное тело, находящееся под действием приложенных к нему внешних сил, моментов и внутренних силовых факторов, не изменяющее своего положения в пространстве (опоры отсутствуют, так как их действия заменены опорными реакциями).