В каких структурах клетки эукариот локализованы молекулы. Строение клетки эукариот. А16. Термин клетка был введён

Тема: «Строение клеток эукариот».

Выберите один правильный ответ.

А1. Митохондрий нет в клетках


  1. дрозда

  2. стафилококка

  3. карася
А2. В выведении продуктов биосинтеза из клетки участвует

  1. комплекс Гольджи

  2. рибосомы

  3. митохондрии

  4. хлоропласты
А3. В клубнях картофеля запасы крахмала накапливаются в

  1. митохондриях

  2. хлоропластах

  3. лейкопластах

  4. хромопластах
А4. Ядрышко – это место образования

  1. хромосом

  2. лизосом

  3. рибосом
А5. Хроматин находится в

  1. рибосомах

  2. аппарате Гольджи

  3. лизосомах
А6. Функция внутриклеточного переваривания макромолекул принадлежит

1) рибосомам

2) лизосомам

4) хромосомам

А7. Рибосома – это органоид активно участвующий в

1) биосинтезе белка

2) синтезе АТФ

3) фотосинтезе

4) делении клетки

А8. Ядро в клетке растений открыл


  1. А. Левенгук

  2. Р. Гук

  3. Р. Броун

  4. И. Мечников

А9. К немембранным компонентам клетки относится


  1. аппарат Гольджи

  2. рибосома
А10. Кристы имеются в

  1. вакуолях

  2. пластидах

  3. хромосомах

  4. митохондриях
А11. Движение одноклеточного животного обеспечивают

  1. жгутики и реснички

  2. клеточный центр

  3. цитоскелет клетки

  4. сократительные вакуоли
А12. Молекулы ДНК находятся в хромосомах, митохондриях, хлоропластах клеток

  1. бактерий

  2. эукариот

  3. прокариот

  4. бактериофагов
А13. Все прокариотические и эукариотические клетки имеют

  1. митохондрии и ядро

  2. вакуоли и комплекс Гольджи

  3. ядерную мембрану и хлоропласты

  4. плазматическую мембрану и рибосомы
А14. Клеточный центр в процессе митоза отвечает за

  1. биосинтез белков

  2. спирализацию хромосом

  3. перемещение цитоплазмы

  4. образование веретена деления
А15. Ферменты лизосом образуются в

1) комплексе Гольджи

2) клеточном центре

3) пластидах

4) митохондриях

А16. Термин клетка был введён


  1. М. Шлейденом

  2. Р. Гуком

  3. Т. Шванном

  4. Р. Вирховым
А17. Ядро отсутствует в клетках

  1. кишечной палочки

  2. простейших

  3. грибов

  4. растений

А18. Клетки прокариот и эукариот различаются по наличию


  1. рибосом
А19. Эукариотической клеткой является

  1. лимфоцит

  2. вирус гриппа

  3. бацилла чумы

  4. серобактерия
А20. Клеточная мембрана состоит из

  1. белков и нуклеиновых кислот

  2. липидов и белков

  3. только липидов

  4. только углеводов
А21. Клетки всех живых организмов имеют

  1. митохондрии

  2. цитоплазму

  3. клеточную стенку

В1. Выберите три верных ответа из шести. Для животной клетке характерно наличие


  1. рибосом

  2. хлоропластов

  3. оформленного ядра

  4. целлюлозной клеточной стенки

  5. комплекса Гольджи

  6. одной кольцевой хромосомы

В2. Выберите три верных ответа из шести. В каких структурах клетки эукариот локализованы молекулы ДНК?


  1. цитоплазме

  2. митохондриях

  3. рибосомах

  4. хлоропластах

  5. лизосомах

В3. Выберите три верных ответа из шести. Для растительной клетки характерно


  1. поглощение твёрдых частиц путём фагоцитоза

  2. наличие хлоропластов

  3. присутствие оформленного ядра

  4. наличие плазматической мембраны

  5. отсутствие клеточной стенки

  6. наличие одной кольцевой хромосомы

В4. Выберите три верных ответа из шести. Каково строение и функции митохондрий?


  1. расщепляют биополимеры до мономеров

  2. характеризуются анаэробным способом получения энергии

  3. содержат соединённые между собой граны

  4. имеют ферментативные комплексы, расположенные на кристах

  5. окисляют органические вещества с образованием АТФ

  6. имеют наружную и внутреннюю мембраны

В5. Выберите три верных ответа из шести. Сходство клеток бактерий и животных состоит в том, что они имеют


  1. оформленное ядро

  2. цитоплазму

  3. митохондрии

  4. плазматическую мембрану

  5. гликокаликс

  6. рибосомы

В6. Выберите три верных ответа из шести. Для животной клетки характерно

1) наличие вакуолей с клеточным соком

2) присутствие хлоропластов

3) захват веществ путём фагоцитоза

4) деление митозом

5) присутствие лизосом

6) отсутствие оформленного ядра

В7. В клетке растений в отличии от клетки животных, имеются

1) рибосомы

2) хлоропласты

3) центриоли

4) плазматическая мембрана

5) целлюлозная клеточная стенка

6) вакуоли с клеточным соком

В8. Установите соответствие между признаком и группой организмов

А) отсутствие ядра 1) прокариоты

Б) наличие митохондрий 2) эукариоты

В) отсутствие ЭПС

Г) наличие аппарата Гольджи

Д) наличие лизосом

Е) линейные хромосомы, состоящие из ДНК и белка

В9. Установите соответствие между признаком организма и царством, для которого этот признак характерен

А) по способу питания в основном автотрофы 1) Растения

Б) имеют вакуоли с клеточным соком 2) Животные

В) клеточная стенка отсутствует

Г) в клетках имеются пластиды

Д) большинство способно передвигаться

Е) по способу питания преимущественно гетеротрофы

В10. Установите соответствие между наличием названных органоидов у бактериальной и животной клеток.

А) митохондрии 1) клетка печени животного

Б) клеточная стенка 2) бактериальная клетка

Г) аппарат Гольджи

Д) нуклеоид

Е) жгутики

В11. Установите соответствие между структурами клеток и их функциями

А) синтез белков 1) клеточная мембрана

Б) синтез липидов 2) ЭПС

В) разделение клетки на отделы (компартменты)

Г) активный транспорт молекул

Д) пассивный транспорт молекул

Е) формирование межклеточных контактов

В12. Расставьте перечисленные события в хронологическом порядке

А) Изобретения электронного микроскопа

Б) Открытие рибосом

В) Изобретение светового микроскопа

Г) Утверждение Р. Вирхова о появлении «каждой клетки от клетки»

Д) Появление клеточной теории Т. Шванна и М. Шлейдена

Е) Первое употребление термина «клетка» Р. Гуком

В13. Установите соответствие между органоидами клеток и их функциями

А) расположены на гранулярной ЭПС

Б) синтез белка

В) фотосинтез 1) рибосомы

Г) систоят из двух субъединиц 2) хлоропласты

Д) состоят из гран с тилакоидами

Е) образуют полисому

С1. Найдите ошибки в приведённом тексте, исправьте их, укажите номера предложений, в которых они сделаны, запишите эти предложения без ошибок. 1. Все живые организмы, - животные, растения, грибы, бактерии, вирусы – состоят из клеток.

2. Любые клетки имеют плазматическую мембрану.

3. Снаружи от мембраны у клеток живых организмов имеется жесткая клеточная стенка.

4. Во всех клетках имеется ядро.

5. В клеточном ядре находится генетический материал клетки – молекулы ДНК.

Дайте полный развёрнутый ответ на вопрос

С2. Докажите, что клетка является открытой системой.

С3. Какова роль биологических мембран в клетке?

С4. Каким образом происходит формирование рибосом в клетках эукариот?

С5. Какие черты сходства митохондрий с прокариотами позволили выдвинуть симбиотическую теорию происхождения эукариотической клетки?

С6. Каково строение и функции оболочки ядра?

С7. Какие особенности хромосом обеспечивают передачу наследственной информации?

Ответы на вопросы уровня А


А1

А2

А3

А4

А5

А6

А7

А8

А9

А10

2

1

2

4

1

2

1

3

4

4

А11

А12

А13

А14

А15

А16

А17

А18

А19

А20

1

2

4

4

1

2

1

1

1

2

Ответы на задания уровня В

В9. 1 А Б Г

В10. 1 А В Г

В11. 1 В Г Д Е

В12. В Е Д Г А Б

««Нуклеиновые кислоты» химия» - Структура хроматина. Шаг спирали. Изучите данные анализа ДНК. Отработка и закрепление полученных умений и знаний. Строение и функции. Образование суперспирали ДНК. Нуклеиновая кислота. Схема редупликации ДНК. Вопросы для самоконтроля. Ключевые слова. Нуклеотид. Обозначения азотистых оснований. ДНК представляет собой двойную нить.

«Нуклеиновая кислота» - Сахар - рибоза. Значение нуклеиновых кислот. Составление сравнительной таблицы. Триплет. Функции ДНК. Гунин. Цель урока: Строение и выполняемые функции нуклеиновых кислот изучили американский биолог Дж. Хранение, перенос и передача по наследству информации о структуре белковых молекул. «Nycleus»- ядро.

«РНК и ДНК» - Повторение и закрепление знаний: Транспортная РНК (т-РНК). Интегрированный урок по теме: «НУКЛЕИНОВЫЕ КИСЛОТЫ». Выполнение задачи на комплементарность. (В ядре, цитоплазме, митохондриях, хлоропластах). (В ядре, митохондриях, хлоропластах). (Двойной спирали). Построение комплементарной цепи ДНК. Нуклеиновые кислоты.

«Нуклеиновые кислоты» - 1892г. – химик Лильенфельд выделил тимонуклеиновую кислоту из зобной железы 1953г. История открытия. Принцип комплементарности (дополнения). Строение нуклеотидов (отличия). Длина молекул ДНК (американский биолог Г.Тейлор). Лабораторный практикум. Биологическая роль нуклеиновых кислот. Джеймс Уотсон и Френсис Крик расшифровали структуру ДНК.

«Молекулы ДНК и РНК» - Виды РНК. Рибосомы матрикса клетки и митохондрии. Физико-химические свойства ДНК. Подвергается гидролизу. Структура внеядерной ДНК. Проблемный вопрос. Молекула РНК - полимер, мономерами которой являются рибонуклеотиды. Молекулярная структура ДНК и типы химической связи в молекуле. Типы нуклеиновых кислот и их строение.

«ДНК и РНК» - Фосфат. До истины докапались Джеймс Уотсон и Френсис Крик в 1953 году. Сокращенно: Нуклеиновые кислоты. Нуклеотиды бывают пяти разных типов. Мономерами нуклеиновых кислот являются. Всего бывает три типа РНК: информационная, рибосомальная и транспортная. Молекулярный текст состоит из четырех букв и может выглядеть примерно так:

Всего в теме 10 презентаций

Тема: «Строение клеток эукариот».

Выберите один правильный ответ.

А1. Митохондрий нет в клетках

2) стафилококка

А2. В выведении продуктов биосинтеза из клетки участвует

1) комплекс Гольджи

2) рибосомы

3) митохондрии

4) хлоропласты

А3. В клубнях картофеля запасы крахмала накапливаются в

1) митохондриях

2) хлоропластах

3) лейкопластах

4) хромопластах

А4. Ядрышко - это место образования

2) хромосом

3) лизосом

4) рибосом

А5. Хроматин находится в

2) рибосомах

3) аппарате Гольджи

4) лизосомах

А6. Функция внутриклеточного переваривания макромолекул принадлежит

1) рибосомам

2) лизосомам

4) хромосомам

А7. Рибосома - это органоид активно участвующий в

1) биосинтезе белка

2) синтезе АТФ

3) фотосинтезе

4) делении клетки

А8. Ядро в клетке растений открыл

1) А. Левенгук

3) Р. Броун

4) И. Мечников

А9. К немембранным компонентам клетки относится

2) аппарат Гольджи

4) рибосома

А10. Кристы имеются в

1) вакуолях

2) пластидах

3) хромосомах

4) митохондриях

А11. Движение одноклеточного животного обеспечивают

1) жгутики и реснички

2) клеточный центр

3) цитоскелет клетки

4) сократительные вакуоли

А12. Молекулы ДНК находятся в хромосомах, митохондриях, хлоропластах клеток

1) бактерий

2) эукариот

3) прокариот

4) бактериофагов

А13. Все прокариотические и эукариотические клетки имеют

1) митохондрии и ядро

2) вакуоли и комплекс Гольджи

3) ядерную мембрану и хлоропласты

4) плазматическую мембрану и рибосомы

А14. Клеточный центр в процессе митоза отвечает за

1) биосинтез белков

2) спирализацию хромосом

3) перемещение цитоплазмы

4) образование веретена деления

А15. Ферменты лизосом образуются в

1) комплексе Гольджи

2) клеточном центре

3) пластидах

4) митохондриях

А16. Термин клетка был введён

1) М. Шлейденом

2) Р. Гуком

3) Т. Шванном

4) Р. Вирховым

А17. Ядро отсутствует в клетках

1) кишечной палочки

2) простейших

4) растений

А18. Клетки прокариот и эукариот различаются по наличию

2) рибосом

А19. Эукариотической клеткой является

1) лимфоцит

2) вирус гриппа

3) бацилла чумы

4) серобактерия

А20. Клеточная мембрана состоит из

1) белков и нуклеиновых кислот

2) липидов и белков

3) только липидов

4) только углеводов

А21. Клетки всех живых организмов имеют

2) митохондрии

3) цитоплазму

4) клеточную стенку

В1. Выберите три верных ответа из шести. Для животной клетке характерно наличие

1) рибосом

2) хлоропластов

3) оформленного ядра

4) целлюлозной клеточной стенки

5) комплекса Гольджи

6) одной кольцевой хромосомы

В2. Выберите три верных ответа из шести. В каких структурах клетки эукариот локализованы молекулы ДНК?

1) цитоплазме

3) митохондриях

4) рибосомах

5) хлоропластах

6) лизосомах

В3. Выберите три верных ответа из шести. Для растительной клетки характерно

1) поглощение твёрдых частиц путём фагоцитоза

2) наличие хлоропластов

3) присутствие оформленного ядра

4) наличие плазматической мембраны

5) отсутствие клеточной стенки

6) наличие одной кольцевой хромосомы

В4. Выберите три верных ответа из шести. Каково строение и функции митохондрий?

1) расщепляют биополимеры до мономеров

2) характеризуются анаэробным способом получения энергии

4) имеют ферментативные комплексы, расположенные на кристах

5) окисляют органические вещества с образованием АТФ

6) имеют наружную и внутреннюю мембраны

В5. Выберите три верных ответа из шести. Сходство клеток бактерий и животных состоит в том, что они имеют

1) оформленное ядро

2) цитоплазму

3) митохондрии

4) плазматическую мембрану

5) гликокаликс

6) рибосомы

В6. Выберите три верных ответа из шести. Для животной клетки характерно

1) наличие вакуолей с клеточным соком

2) присутствие хлоропластов

3) захват веществ путём фагоцитоза

4) деление митозом

5) присутствие лизосом

6) отсутствие оформленного ядра

В7. В клетке растений в отличии от клетки животных, имеются

1) рибосомы

2) хлоропласты

3) центриоли

4) плазматическая мембрана

5) целлюлозная клеточная стенка

6) вакуоли с клеточным соком

В8. Установите соответствие между признаком и группой организмов

А) отсутствие ядра 1) прокариоты

Б) наличие митохондрий 2) эукариоты

В) отсутствие ЭПС

Г) наличие аппарата Гольджи

Д) наличие лизосом

Е) линейные хромосомы, состоящие из ДНК и белка

В9. Установите соответствие между признаком организма и царством, для которого этот признак характерен

А) по способу питания в основном автотрофы 1) Растения

Б) имеют вакуоли с клеточным соком 2) Животные

В) клеточная стенка отсутствует

Г) в клетках имеются пластиды

Д) большинство способно передвигаться

Е) по способу питания преимущественно гетеротрофы

В10. Установите соответствие между наличием названных органоидов у бактериальной и животной клеток.

А) митохондрии 1) клетка печени животного

Б) клеточная стенка 2) бактериальная клетка

Г) аппарат Гольджи

Д) нуклеоид

Е) жгутики

В11. Установите соответствие между структурами клеток и их функциями

А) синтез белков 1) клеточная мембрана

Б) синтез липидов 2) ЭПС

В) разделение клетки на отделы (компартменты)

Г) активный транспорт молекул

Д) пассивный транспорт молекул

Е) формирование межклеточных контактов

В12. Расставьте перечисленные события в хронологическом порядке

А) Изобретения электронного микроскопа

Б) Открытие рибосом

В) Изобретение светового микроскопа

Г) Утверждение Р. Вирхова о появлении «каждой клетки от клетки»

Д) Появление клеточной теории Т. Шванна и М. Шлейдена

Е) Первое употребление термина «клетка» Р. Гуком

В13. Установите соответствие между органоидами клеток и их функциями

А) расположены на гранулярной ЭПС

Б) синтез белка

В) фотосинтез 1) рибосомы

Г) систоят из двух субъединиц 2) хлоропласты

Д) состоят из гран с тилакоидами

Е) образуют полисому

С1. Найдите ошибки в приведённом тексте, исправьте их, укажите номера предложений, в которых они сделаны, запишите эти предложения без ошибок. 1. Все живые организмы, - животные, растения, грибы, бактерии, вирусы - состоят из клеток.

2. Любые клетки имеют плазматическую мембрану.

3. Снаружи от мембраны у клеток живых организмов имеется жесткая клеточная стенка.

4. Во всех клетках имеется ядро.

5. В клеточном ядре находится генетический материал клетки - молекулы ДНК.

Дайте полный развёрнутый ответ на вопрос

С2. Докажите, что клетка является открытой системой.

С3. Какова роль биологических мембран в клетке?

С4. Каким образом происходит формирование рибосом в клетках эукариот?

С5. Какие черты сходства митохондрий с прокариотами позволили выдвинуть симбиотическую теорию происхождения эукариотической клетки?

С6. Каково строение и функции оболочки ядра?

С7. Какие особенности хромосом обеспечивают передачу наследственной информации?

Ответы на вопросы уровня А

Ответы на задания уровня В

В10. 1 А В Г

В11. 1 В Г Д Е

В12. В Е Д Г А Б

Справа крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса 23 апреля 2016 года

Дезоксирибонуклеиновая кислота. Общие сведения

ДНК (дезоксирибонуклеиновая кислота) - своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение. ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни как человека, так и любого др. организхма. Искусственное или естественное воздействие внешней среды способны лишь в незначительной степени повлиять на общую выраженность отдельных генетических признаков или сказаться на развитии запрограммированных процессов.

Дезоксирибонуклеи́новая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы (С ) и фосфатной (Ф ) группы (фосфодиэфирные связи).


Рис. 2. Нуклертид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии.

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином (А-Т ), гуанин — только с цитозином (Г-Ц ). Именно эти пары и составляют «перекладины» винтовой "лестницы" ДНК (см.: рис. 2, 3 и 4).


Рис. 2. Азотистые основания

Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.


Рис. 3. Репликация ДНК

Расположение базовых комбинаций химических соединений ДНК и количественные соотношения между этими комбинациями обеспечивают кодирование наследственной информации.

Образование новой ДНК (репликация)

  1. Процесс репликации: раскручивание двойной спирали ДНК — синтез комплементарных цепей ДНК-полимеразой — образование двух молекул ДНК из одной.
  2. Двойная спираль «расстегивается» на две ветви, когда ферменты разрушают связь между базовыми парами химических соединений.
  3. Каждая ветвь является элементом новой ДНК. Новые базовые пары соединяются в той же последовательности, что и в родительской ветви.

По завершении дупликации образуются две самостоятельные спирали, созданные из химических соединений родительской ДНК и имеющие с ней одинаковый генетический код. Таким путем ДНК способна перерывать информацию от клетки к клетке.

Более подробная информация:

СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ


Рис. 4 . Азотистые основания: аденин, гуанин, цитозин, тимин

Дезоксирибонуклеиновая кислота (ДНК) относится к нуклеиновым кислотам. Нуклеиновые кислоты - это класс нерегулярных биополимеров, мономерами которых являются нуклеотиды.

НУКЛЕОТИДЫ состоят из азотистого основания , соединенного с пятиуглеродным углеводом (пентозой) - дезоксирибозой (в случае ДНК) или рибозой (в случае РНК), который соединяется с остатком фосфорной кислоты (H 2 PO 3 -).

Азотистые основания бывают двух типов: пиримидиновые основания - урацил (только в РНК), цитозин и тимин, пуриновые основания - аденин и гуанин.


Рис. 5. Структура нуклеотидов (слева), расположение нуклеотида в ДНК (снизу) и типы азотистых оснований (справа): пиримидиновые и пуриновые


Атомы углерода в молекуле пентозы нумеруются числами от 1 до 5. Фосфат соединяется с третьим и пятым атомами углерода. Так нуклеинотиды соединяются в цепь нуклеиновой кислоты. Таким образом, мы можем выделить 3’ и 5’-концы цепи ДНК:


Рис. 6. Выделение 3’ и 5’-концов цепи ДНК

Две цепи ДНК образуют двойную спираль . Эти цепи в спирали сориентированы в противоположных направлениях. В разных цепях ДНК азотистые основания соединены между собой с помощью водородных связей . Аденин всегда соединяется с тимином, а цитозин - с гуанином. Это называется правилом комплементарности .

Правило комплементарности:

A-T G-C

Например, если нам дана цепь ДНК, имеющая последовательность

3’- ATGTCCTAGCTGCTCG - 5’,

то вторая ей цепь будет комплементарна и направлена в противоположном направлении - от 5’-конца к 3’-концу:

5’- TACAGGATCGACGAGC- 3’.


Рис. 7. Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей

РЕПЛИКАЦИЯ ДНК

Репликация ДНК - это процесс удвоения молекулы ДНК путем матричного синтеза. В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (ДНК-праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющей в норме функции репарации (исправления химических повреждений и разрывов в молекле ДНК).

Репликация происходит по полуконсервативному механизму. Это значит, что двойная спираль ДНК расплетается и на каждой из ее цепей по принципу комплементарности достраивается новая цепь. Дочерняя молекула ДНК, таким образом, содержит в себе одну цепь от материнской молекулы и одну вновь синтезированную. Репликация происходит в направлении от 3’ к 5’ концу материнской цепи.

Рис. 8. Репликация (удвоение) молекулы ДНК

ДНК-синтез - это не такой сложный процесс, как может показаться на первый взгляд. Если подумать, то для начала нужно разобраться, что же такое синтез. Это процесс объединения чего-либо в одно целое. Образование новой молекулы ДНК проходит в несколько этапов:

1) ДНК-топоизомераза, располагаясь перед вилкой репликации, разрезает ДНК для того, чтобы облегчить ее расплетание и раскручивание.
2) ДНК-хеликаза вслед за топоизомеразой влияет на процесс «расплетения» спирали ДНК.
3) ДНК-связывающие белки осуществляют связывание нитей ДНК, а также проводят их стабилизацию, не допуская их прилипания друг к другу.
4) ДНК-полимераза δ (дельта), согласовано со скоростью движения репликативной вилки, осуществляет синтез ведущей цепи дочерней ДНК в направлении 5"→3" на матрице материнскойнити ДНК по направлению от ее 3"-конца к 5"-концу (скорость до 100 пар нуклеотидов в секунду). Этим события на данной материнской нити ДНК ограничиваются.



Рис. 9. Схематическое изображение процесса репликации ДНК: (1) Отстающая цепь (запаздывающая нить), (2) Ведущая цепь (лидирующая нить), (3) ДНК-полимераза α (Polα ), (4) ДНК-лигаза, (5) РНК-праймер, (6) Праймаза, (7) Фрагмент Оказаки, (8) ДНК-полимераза δ (Polδ ), (9) Хеликаза, (10) Однонитевые ДНК-связывающие белки, (11) Топоизомераза.

Далее описан синтез отстающей цепи дочерней ДНК (см. Схему репликативной вилки и функции ферментов репликации)

Нагляднее о репликации ДНК см.

5) Непосредственно сразу после расплетания и стабилизации другой нити материнской молекулы к ней присоединяется ДНК-полимераза α (альфа) и в направлении 5"→3" синтезирует праймер (РНК-затравку) - последовательность РНК на матрице ДНК длиной от 10 до 200 нуклеотидов. После этого фермент удаляется с нити ДНК.

Вместо ДНК-полимеразы α к 3"-концу праймера присоединяется ДНК-полимераза ε .

6) ДНК-полимераза ε (эпсилон) как бы продолжает удлинять праймер, но в качестве субстрата встраивает дезоксирибонуклеотиды (в количестве 150-200 нуклеотидов). В результате образуется цельная нить из двух частей - РНК (т.е. праймер) и ДНК . ДНК-полимераза ε работает до тех пор, пока не встретит праймер предыдущего фрагмента Оказаки (синтезированный чуть ранее). После этого данный фермент удаляется с цепи.

7) ДНК-полимераза β (бета) встает вместо ДНК-полимеразы ε , движется в том же направлении (5"→3") и удаляет рибонуклеотиды праймера, одновременно встраивая дезоксирибонуклеотиды на их место. Фермент работает до полного удаления праймера, т.е. пока на его пути не встанет дезоксирибонуклеотид (еще более ранее синтезированный ДНК-полимеразой ε ). Связать результат свой работы и впереди стоящую ДНК фермент не в состоянии, поэтому он сходит с цепи.

В результате на матрице материнской нити "лежит" фрагмент дочерней ДНК. Он называется фрагмент Оказаки .

8) ДНК-лигаза производит сшивку двух соседних фрагментов Оказаки , т.е. 5"-конца отрезка, синтезированного ДНК-полимеразой ε , и 3"-конца цепи, встроенного ДНК-полимеразой β .

СТРОЕНИЕ РНК

Рибонуклеиновая кислота (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК, РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом . Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Однако в отличие от ДНК, РНК обычно имеет не две цепи, а одну. Пентоза в РНК представлена рибозой, а не дезоксирибозой (у рибозы присутствует дополнительная гидроксильная группа на втором атоме углевода). Наконец, ДНК отличается от РНК по составу азотистых оснований: вместо тимина (Т ) в РНК представлен урацил (U ) , который также комплементарен аденину.

Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией , то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами - РНК-полимеразами .

Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией, т.е. синтеза белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Рис. 10. Отличие ДНК от РНК по азотистому основанию: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.

ТРАНСКРИПЦИЯ

Это процесс синтеза РНК на матрице ДНК. ДНК раскручивается на одном из участков. На одной из цепей содержится информация, которую необходимо скопировать на молекулу РНК - эта цепь называется кодирующей. Вторая цепь ДНК, комплементарная кодирующей, называется матричной. В процессе транскрипции на матричной цепи в направлении 3’ - 5’ (по цепи ДНК) синтезируется комплементарная ей цепь РНК. Таким образом, создается РНК-копия кодирующей цепи.

Рис. 11. Схематическое изображение транскрипции

Например, если нам дана последовательность кодирующей цепи

3’- ATGTCCTAGCTGCTCG - 5’,

то, по правилу комплементарности, матричная цепь будет нести последовательность

5’- TACAGGATCGACGAGC- 3’,

а синтезируемая с нее РНК - последовательность

ТРАНСЛЯЦИЯ

Рассмотрим механизм синтеза белка на матрице РНК, а также генетический код и его свойства. Также для наглядности по ниже приведенной ссылке рекомендуем посмотреть небольшое видео о процессах транскрипции и трансляции, происходящих в живой клетке:

Рис. 12. Процесс синтеза белка: ДНК кодирует РНК, РНК кодирует белок

ГЕНЕТИЧЕСКИЙ КОД

Генетический код - способ кодирования аминокислотной последовательности белков с помощью последовательности нуклеотидов. Каждая аминокислота кодируется последовательностью из трех нуклеотидов - кодоном или триплетом.

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5" к 3" концу мРНК.

Таблица 1. Стандартный генетический код

1-е
основа

ние

2-е основание

3-е
основа

ние

U

C

A

G

U

U U U

(Phe/F)

U C U

(Ser/S)

U A U

(Tyr/Y)

U G U

(Cys/C)

U

U U C

U C C

U A C

U G C

C

U U A

(Leu/L)

U C A

U A A

Стоп-кодон**

U G A

Стоп-кодон**

A

U U G

U C G

U A G

Стоп-кодон**

U G G

(Trp/W)

G

C

C U U

C C U

(Pro/P)

C A U

(His/H)

C G U

(Arg/R)

U

C U C

C C C

C A C

C G C

C

C U A

C C A

C A A

(Gln/Q)

C GA

A

C U G

C C G

C A G

C G G

G

A

A U U

(Ile/I)

A C U

(Thr/T)

A A U

(Asn/N)

A G U

(Ser/S)

U

A U C

A C C

A A C

A G C

C

A U A

A C A

A A A

(Lys/K)

A G A

A

A U G

(Met/M)

A C G

A A G

A G G

G

G

G U U

(Val/V)

G C U

(Ala/A)

G A U

(Asp/D)

G G U

(Gly/G)

U

G U C

G C C

G A C

G G C

C

G U A

G C A

G A A

(Glu/E)

G G A

A

G U G

G C G

G A G

G G G

G

Среди триплетов есть 4 специальных последовательности, выполняющих функции «знаков препинания»:

  • *Триплет AUG , также кодирующий метионин, называется старт-кодоном . С этого кодона начинается синтез молекулы белка. Таким образом, во время синтеза белка, первой аминокислотой в последовательности всегда будет метионин.
  • **Триплеты UAA , UAG и UGA называются стоп-кодонами и не кодируют ни одной аминокислоты. На этих последовательностях синтез белка прекращается.

Свойства генетического кода

1. Триплетность . Каждая аминокислота кодируется последовательностью из трех нуклеотидов - триплетом или кодоном.

2. Непрерывность . Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.

3. Неперекрываемость . Один нуклеотид не может входить одновременно в два триплета.

4. Однозначность . Один кодон может кодировать только одну аминокислоту.

5. Вырожденность . Одна аминокислота может кодироваться несколькими разными кодонами.

6. Универсальность . Генетический код одинаков для всех живых организмов.

Пример. Нам дана последовательность кодирующей цепи:

3’- CCGATTGCACGTCGATCGTATA - 5’.

Матричная цепь будет иметь последовательность:

5’- GGCTAACGTGCAGCTAGCATAT - 3’.

Теперь «синтезируем» с этой цепи информационную РНК:

3’- CCGAUUGCACGUCGAUCGUAUA - 5’.

Синтез белка идет в направлении 5’ → 3’, следовательно, нам нужно перевернуть последовательность, чтобы «прочитать» генетический код:

5’- AUAUGCUAGCUGCACGUUAGCC - 3’.

Теперь найдем старт-кодон AUG:

5’- AUAUG CUAGCUGCACGUUAGCC - 3’.

Разделим последовательность на триплеты:

звучит следующим образом: информация с ДНК передается на РНК (транскрипция), с РНК - на белок (трансляция). ДНК также может удваиваться путем репликации, и также возможен процесс обратной транскрипции, когда по матрице РНК синтезируется ДНК, но такой процесс в основном характерен для вирусов.


Рис. 13. Центральная догма молекулярной биологии

ГЕНОМ: ГЕНЫ и ХРОМОСОМЫ

(общие понятия)

Геном - совокупность всех генов организма; его полный хромосомный набор.

Термин "геном" был предложен Г. Винклером в 1920 г. для описания совокупности генов, заключенных в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими ("избыточными") последовательностями нуклеотидов, которые не заключают в себе информации о белках и нуклеиновых кислотах. Таким образом, основную часть генома любого организма составляет вся ДНК его гаплоидного набора хромосом.

Гены — это участки молекул ДНК, кодирующие полипептиды и молекулы РНК

За последнее столетие наше представление о генах существенно изменилось. Ранее геном называли участок хромосомы, кодирующий или определяющий один признак или фенотипическое (видимое) свойство, например цвет глаз.

В 1940 г. Джордж Бидл и Эдвард Тейтем предложили молекулярное определение гена. Ученые обрабатывали споры гриба Neurospora crassa рентгеновским излучением и другими агентами, вызывающими изменения в последовательности ДНК (мутации ), и обнаружили мутантные штаммы гриба, утратившие некоторые специфические ферменты, что в некоторых случаях приводило к нарушению целого метаболического пути. Бидл и Тейтем пришли к выводу, что ген — это участок генетического материала, который определяет или кодирует один фермент. Так появилась гипотеза «один ген — один фермент» . Позднее эта концепция была расширена до определения «один ген — один полипептид» , поскольку многие гены кодируют белки, не являющиеся ферментами, а полипептид может оказаться субъединицей сложного белкового комплекса.

На рис. 14 показана схема того, как триплеты нуклеотидов в ДНК определяют полипептид - аминокислотную последовательность белка при посредничестве мРНК. Одна из цепей ДНК играет роль матрицы для синтеза мРНК, нуклеотидные триплеты (кодоны) которой комплементарны триплетам ДНК. У некоторых бактерий и многих эукариот кодирующие последовательности прерываются некодирующими участками(так называемыми интронами ).

Современное биохимическое определение гена еще более конкретно. Генами называются все участки ДНК, кодирующие первичную последовательность конечных продуктов, к которым относятся полипептиды или РНК, обладающие структурной или каталитической функцией.

Наряду с генами ДНК содержит и другие последовательности, выполняющие исключительно регуляторную функцию. Регуляторные последовательности могут обозначать начало или конец генов, влиять на транскрипцию или указывать место инициации репликации или рекомбинации. Некоторые гены могут экспрессироваться разными путями, при этом один и тот же участок ДНК служит матрицей для образования разных продуктов.

Мы можем приблизительно рассчитать минимальный размер гена , кодирующего средний белок. Каждая аминокислота в полипептидной цепи кодируется последовательностью из трех нуклеотидов; последовательности этих триплетов (кодонов) соответствуют цепочке аминокислот в полипептиде, который кодируется данным геном. Полипептидная цепь из 350 аминокислотных остатков (цепь средней длины) соответствует последовательности из 1050 п.н. (пар нуклеотидов ). Однако многие гены эукариот и некоторые гены прокариот прерываются сегментами ДНК, не несущими информации о белке, и поэтому оказываются значительно длиннее, чем показывает простой расчет.

Сколько генов в одной хромосоме?


Рис. 15. Вид хромосом в прокаритической (слева) и эукариотической клеках. Гистоны (Histones) — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация.

Как известно, бактериальные клетки имеют хромосому в виде нити ДНК, уложенной в компактную структуру - нуклеоид. Хромосома прокариота Escherichia coli , чей геном полностью расшифрован, представляет собой кольцевую молекулу ДНК (на самом деле, это не правильный круг, а скорее петля без начала и конца), состоящую из 4 639 675 п.н. В этой последовательности содержится примерно 4300 генов белков и еще 157 генов стабильных молекул РНК. В геноме человека примерно 3,1 млрд пар нуклеотидов, соответствующих почти 29 000 генам, расположенным на 24 разных хромосомах.

Прокариоты (Бактерии).

Бактерия E. coli имеет одну двухцепочечную кольцевую молекулу ДНК. Она состоит из 4 639 675 п.н. и достигает в длину примерно 1,7 мм, что превышает длину самой клетки E. coli приблизительно в 850 раз. Помимо крупной кольцевой хромосомы в составе нуклеоида многие бактерии содержат одну или несколько маленьких кольцевых молекул ДНК, свободно располагающихся в цитозоле. Такие внехромосомные элементы называют плазмидами (рис. 16).

Большинство плазмид состоит всего из нескольких тысяч пар нуклеотидов, некоторые содержат более 10000 п. н. Они несут генетическую информацию и реплицируются с образованием дочерних плазмид, которые попадают в дочерние клетки в процессе деления родительской клетки. Плазмиды обнаружены не только в бактериях, но также в дрожжах и других грибах. Во многих случаях плазмиды не дают никаких преимуществ клеткам-хозяевам, и их единственная задача — независимое воспроизведение. Однако некоторые плазмиды несут полезные для хозяина гены. Например, содержащиеся в плазмидах гены могут придавать клеткам бактерий устойчивость к антибактериальным агентам. Плазмиды, несущие ген β-лактамазы, обеспечивают устойчивость к β-лактамным антибиотикам, таким как пенициллин и амоксициллин. Плазмиды могут переходить от клеток, устойчивых к антибиотикам, к другим клеткам того же или другого вида бактерий, в результате чего эти клетки также становятся резистентными. Интенсивное применение антибиотиков является мощным селективным фактором, способствующим распространению плазмид, кодирующих устойчивость к антибиотикам (а также транспозонов, которые кодируют аналогичные гены) среди болезнетворных бактерий, и приводит к появлению бактериальных штаммов с устойчивостью к нескольким антибиотикам. Врачи начинают понимать опасность широкого использования антибиотиков и назначают их только в случае острой необходимости. По аналогичным причинам ограничивается широкое использование антибиотиков для лечения сельскохозяйственных животных.

См. также: Равин Н.В., Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции, 2013. Т. 17. № 4/2. С. 972-984.

Эукариоты.

Таблица 2. ДНК, гены и хромосомы некоторых организмов

Общая ДНК,

п.н.

Число хромосом*

Примерное число генов

Escherichia coli (бактерия)

4 639 675

4 435

Saccharomyces cerevisiae (дрожжи)

12 080 000

16**

5 860

Caenorhabditis elegans (нематода)

90 269 800

12***

23 000

Arabidopsis thaliana (растение)

119 186 200

33 000

Drosophila melanogaster (плодовая мушка)

120 367 260

20 000

Oryza sativa (рис)

480 000 000

57 000

Mus musculus (мышь)

2 634 266 500

27 000

Homo sapiens (человек)

3 070 128 600

29 000

Примечание. Информация постоянно обновляется; для получения более свежей информации обратитесь к сайтам, посвященным отдельным геномным проектам

* Для всех эукариот, кроме дрожжей, приводится диплоидный набор хромосом. Диплоидный набор хромосом (от греч. diploos- двойной и eidos- вид) - двойной набор хромосом (2n), каждая из которых имеет себе гомологичную.
**Гаплоидный набор. Дикие штаммы дрожжей обычно имеют восемь (октаплоидный) или больше наборов таких хромосом.
***Для самок с двумя Х хромосомами. У самцов есть Х хромосома, но нет Y, т. е. всего 11 хромосом.

В клетке дрожжей, одних из самых маленьких эукариот, в 2,6 раза больше ДНК, чем в клетке E. coli (табл. 2). Клетки плодовой мушки Drosophila , классического объекта генетических исследований, содержат в 35 раз больше ДНК, а клетки человека — примерно в 700 раз больше ДНК, чем клетки E. coli. Многие растения и амфибии содержат еще больше ДНК. Генетический материал клеток эукариот организован в виде хромосом. Диплоидный набор хромосом (2n ) зависит от вида организма (табл. 2).

Например, в соматической клетке человека 46 хромосом (рис. 17 ). Каждая хромосома эукариотической клетки, как показано на рис. 17, а , содержит одну очень крупную двухспиральную молекулу ДНК. Двадцать четыре хромосомы человека (22 парные хромосомы и две половые хромосомы X и Y) различаются по длине более чем в 25 раз. Каждая хромосома эукариот содержит определенный набор генов.


Рис. 17. Хромосомы эукариот. а — пара связанных и конденсированных сестринских хроматид из хромосомы человека. В такой форме эукариотические хромосомы пребывают после репликации и в метафазе в процессе митоза. б — полный набор хромосом из лейкоцита одного из авторов книги. В каждой нормальной соматической клетке человека содержится 46 хромосом.

Если соединить между собой молекулы ДНК человеческого генома (22 хромосомы и хромосомы X и Y или Х и Х), получится последовательность длиной около одного метра. Прим.: У всех млекопитающих и других организмов с гетерогаметным мужским полом, у самок две X-хромосомы (XX), а у самцов — одна X-хромосома и одна Y-хромосома (XY).

Большинство клеток человека , поэтому общая длина ДНК таких клеток около 2м. У взрослого человека примерно 10 14 клеток, таким образом, общая длина всех молекул ДНК составляет 2・10 11 км. Для сравнения, окружность Земли — 4・10 4 км, а расстояние от Земли до Солнца — 1,5・10 8 км. Вот как удивительно компактно упакована ДНК в наших клетках!

В клетках эукариот есть и другие органеллы, содержащие ДНК, — это митохондрии и хлоропласты. Выдвигалось множество гипотез относительно происхождения ДНК митохондрий и хлоропластов. Общепризнанная сегодня точка зрения заключается в том, что они представляют собой рудименты хромосом древних бактерий, которые проникли в цитоплазму хозяйских клеток и стали предшественниками этих органелл. Митохондриальная ДНК кодирует митохондриальные тРНК и рРНК, а также несколько митохондриальных белков. Более 95% митохондриальных белков кодируется ядерной ДНК.

СТРОЕНИЕ ГЕНОВ

Рассмотрим строение гена у прокариот и эукариот, их сходства и различия. Несмотря на то, что ген — это участок ДНК, кодирующий всего один белок или РНК, кроме непосредственно кодирующей части, он также включает в себя регуляторные и иные структурные элементы, имеющие разное строение у прокариот и эукариот.

Кодирующая последовательность - основная структурно-функциональная единица гена, именно в ней находятся триплеты нуклеотидов, кодирующие аминокислотную последовательность. Она начинается со старт-кодона и заканчивается стоп-кодоном.

До и после кодирующей последовательности находятся нетранслируемые 5’- и 3’-последовательности . Они выполняют регуляторные и вспомогательные функции, например, обеспечивают посадку рибосомы на и-РНК.

Нетранслируемые и кодирующая последовательности составлют единицу транскрипции - транскрибируемый участок ДНК, то есть участок ДНК, с которого происходит синтез и-РНК.

Терминатор - нетранскрибируемый участок ДНК в конце гена, на котором останавливается синтез РНК.

В начале гена находится регуляторная область , включающая в себя промотор и оператор .

Промотор - последовательность, с которой связывается полимераза в процессе инициации транскрипции. Оператор - это область, с которой могут связываться специальные белки - репрессоры , которые могут уменьшать активность синтеза РНК с этого гена - иначе говоря, уменьшать его экспрессию .

Строение генов у прокариот

Общий план строения генов у прокариот и эукариот не отличается - и те, и другие содержат регуляторную область с промотором и оператором, единицу транскрипции с кодирующей и нетранслируемыми последовательностями и терминатор. Однако организация генов у прокариот и эукариот отличается.

Рис. 18. Схема строения гена у прокариот (бактерий) - изображение увеличивается

В начале и в конце оперона есть единые регуляторные области для нескольких структурных генов. С транскрибируемого участка оперона считывается одна молекула и-РНК, которая содержит несколько кодирующих последовательностей, в каждой из которых есть свой старт- и стоп-кодон. С каждого из таких участков с интезируется один белок. Таким образом, с одной молекулы и-РНК синтезируется несколько молекул белка.

Для прокариот характерно объединение нескольких генов в единую функциональную единицу - оперон . Работу оперона могут регулировать другие гены, которые могут быть заметно удалены от самого оперона - регуляторы . Белок, транслируемый с этого гена называется репрессор . Он связывается с оператором оперона, регулируя экспрессию сразу всех генов, в нем содержащихся.

Для прокариот также характерно явление сопряжения транскрипции и трансляции .


Рис. 19 Явление сопряжения транскрипции и трансляции у прокариот - изображение увеличивается

Такое сопряжение не встречается у эукариот из-за наличия у них ядерной оболочки, отделяющей цитоплазму, где происходит трансляция, от генетического материала, на котором происходит транскрипция. У прокариот во время синтеза РНК на матрице ДНК с синтезируемой молекулой РНК может сразу связываться рибосома. Таким образом, трансляция начинается еще до завершения транскрипции. Более того, с одной молекулой РНК может одновременно связываться несколько рибосом, синтезируя сразу несколько молекул одного белка.

Строение генов у эукариот

Гены и хромосомы эукариот очень сложно организованы

У бактерий многих видов всего одна хромосома, и почти во всех случаях в каждой хромосоме присутствует по одной копии каждого гена. Лишь немногие гены, например гены рРНК, содержатся в нескольких копиях. Гены и регуляторные последовательности составляют практически весь геном прокариот. Более того, почти каждый ген строго соответствует аминокислотной последовательности (или последовательности РНК), которую он кодирует (рис. 14).

Структурная и функциональная организация генов эукариот гораздо сложнее. Исследование хромосом эукариот, а позднее секвенирование полных последовательностей геномов эукариот принесло много сюрпризов. Многие, если не большинство, генов эукариот обладают интересной особенностью: их нуклеотидные последовательности содержат один или несколько участков ДНК, в которых не кодируется аминокислотная последовательность полипептидного продукта. Такие нетранслируемые вставки нарушают прямое соответствие между нуклеотидной последовательностью гена и аминокислотной последовательностью кодируемого полипептида. Эти нетранслируемые сегменты в составе генов называют интронами , или встроенными последовательностями , а кодирующие сегменты — экзонами . У прокариот лишь немногие гены содержат интроны.

Итак, у эукариот практически не встречается объединение генов в опероны, и кодирующая последовательность гена эукариот чаще всего разделена на транслируемые участки - экзоны , и нетранслируемые участки - интроны.

В большинстве случаев функция интронов не установлена. В целом, лишь около 1,5% ДНК человека являются ≪кодирующими≫, т. е. несут информацию о белках или РНК. Однако с учетом крупных интронов получается, что ДНК человека на 30% состоит из генов. Поскольку гены составляют относительно небольшую долю в геноме человека, значительная часть ДНК остается неучтенной.

Рис. 16. Схема строение гена у эукариот - изображение увеличивается

С каждого гена сначала синтезируется незрелая, или пре-РНК, которая содержит в себе как интроны, так и экзоны.

После этого проходит процесс сплайсинга, в результате которого интронные участки вырезаются, и образуется зрелая иРНК, с которой может быть синтезирован белок.


Рис. 20. Процесс альтернативного сплайсинга - изображение увеличивается

Такая организация генов позволяет, например, осуществить , когда с одного гена могут быть синтезированы разные формы белка, за счет того, что в процессе сплайсинга экзоны могут сшиваться в разных последовательностях.

Рис. 21. Отличия в строении генов прокариот и эукариот - изображение увеличивается

МУТАЦИИ И МУТАГЕНЕЗ

Мутацией называется стойкое изменение генотипа, то есть изменение нуклеотидной последовательности.

Процесс, который приводит к возникновению мутаций называется мутагенезом , а организм, все клетки которого несут одну и ту же мутацию — мутантом .

Мутационная теория была впервые сформулирована Гуго де Фризом в 1903 году. Современный ее вариант включает в себя следующие положения:

1. Мутации возникают внезапно, скачкообразно.

2. Мутации передаются из поколения в поколение.

3. Мутации могут быть полезными, вредными или нейтральными, доминантными или рецессивными.

4. Вероятность обнаружения мутаций зависит от числа исследованных особей.

5. Сходные мутации могут возникать повторно.

6. Мутации не направленны.

Мутации могут возникать под действием различных факторов. Различают мутации, возникшие под действием мутагенных воздействий : физических (например, ультрафиолета или радиации), химических (например, колхицина или активных форм кислорода) и биологических (например, вирусов). Также мутации могут быть вызваны ошибками репликации .

В зависимости от условий появления мутации подразделяют на спонтанные — то есть мутации, возникшие в нормальных условиях, и индуцированые — то есть мутации, которые возникли при особых условиях.

Мутации могут возникать не только в ядерной ДНК, но и, например, в ДНК митохондрий или пластид. Соответственно, мы можем выделять ядерные и цитоплазматические мутации.

В результате возникновения мутаций часто могут появляться новые аллели. Если мутантный аллель подавляет действие нормального, мутация называется доминантной . Если нормальный аллель подавляет мутантный, такая мутация называется рецессивной . Большинство мутаций, приводящих к возникновению новых аллелей являются рецессивными.

По эффекту выделяют мутации адаптивные , приводящие к повышению приспособленности организма к среде, нейтральные , не влияющие на выживаемость, вредные , понижающие приспособленность организмов к условиям среды и летальные , приводящие к смерти организма на ранних стадиях развития.

По последствиям выделяются мутации, приводящие к потери функции белка , мутации, приводящие к возникновению у белка новой функции , а также мутации, которые изменяют дозу гена , и, соответственно, дозу белка синтезируемого с него.

Мутация может возникнуть к любой клетке организма. Если мутация возникает в половой клетке, она называется герминативной (герминальной, или генеративной). Такие мутации не проявляются у того организма, у которого они появились, но приводят к появлению мутантов в потомстве и передаются по наследству, поэтому они важны для генетики и эволюции. Если мутация возникает в любой другой клетке, она называется соматической . Такая мутация может в той или иной степени проявляться у того организма, у которого она возникла, например, приводить к образованию раковых опухолей. Однако такая мутация не передается по наследству и не влияет на потомков.

Мутации могут затрагивать разные по размеру участки генома. Выделяют генные , хромосомные и геномные мутации.

Генные мутации

Мутации, которые возникают в масштабе меньшем, чем один ген, называются генными , или точечными (точковыми) . Такие мутации приводят к изменению одного и нескольких нуклеотидов в последовательности. Среди генных мутаций выделяют замены , приводящие к замене одного нуклеотида на другой, делеции , приводящие к выпадению одного из нуклеотидов, инсерции , приводящие к добавлению лишнего нуклеотида в последовательность.


Рис. 23. Генные (точечные) мутации

По механизму воздействия на белок, генные мутации делят на: синонимичные , которые (в результате вырожденности генетического кода) не приводят к изменению аминокислотного состава белкового продукта, миссенс-мутации , которые приводят к замене одной аминокислоты на другую и могут влиять на структуру синтезируемого белка, хотя часто они оказываются незначительными, нонсенс-мутации , приводящие к замене кодирующего кодона на стоп-кодон, мутации, приводящие к нарушению сплайсинга:


Рис. 24. Схемы мутаций

Также по механизму воздействия на белок выделяют мутации, приводящие к сдвигу рамки считывания , например, инсерции и делеции. Такие мутации, как и нонсенс-мутации, хоть и возникают в одной точке гена, часто воздействуют на всю структуру белка, что может привести к полному изменению его структуры.

Рис. 29. Хромосома до и после дупликации

Геномные мутации

Наконец, геномные мутации затрагивают весь геном целиком, то есть меняется количество хромосом. Выделяют полиплоидии — увеличение плоидности клетки, и анеуплоидии, то есть изменение количества хромосом, например, трисомии (наличие у одной из хромосом дополнительного гомолога) и моносомии (отсутствие у хромосомы гомолога).

Видео по теме ДНК

РЕПЛИКАЦИЯ ДНК, КОДИРОВАНИЕ РНК, СИНТЕЗ БЕЛКА

Для бактерий и сине-зеленых водорослей, которых принято причислять к классу прокариот (то есть доядерных живых организмов), характерно наличие бактериальной хромосомы. Это условное название, за которым скрывается единственная кольцевая молекула ДНК. Она имеется у всех клеток прокариот, располагается непосредственно в цитоплазме, не имея защитной оболочки.

Как становится понятным из определения прокариот, основное качество их строения заключается в отсутствии ядра. Кольцевая молекула ДНК отвечает за сохранность и передачу всей информации, которая понадобится новой клетке, созданной в процессе деления. Структура цитоплазмы очень плотная и она неподвижна. В ней нет ряда органоидов, которые выполняют важные функции в клетках эукариот:

  • митохондрий,
  • лизосом,
  • эндоплазматической сети,
  • пластидов,
  • комплекса Гольджи.

В цитоплазме хаотично расположены рибосомы, которые «заняты» на производстве белков. Немаловажной является миссия по производству энергии. Ее синтез происходит в митохондриях, но строение бактерий исключает их наличие. Поэтому функцию данных органоидов взяла на себя именно цитоплазма.

В митохондриях имеется одна особенность, делающая их несколько схожими с бактериями, – в них хранится митохондриальная ДНК. Ее строение напоминает бактериальные хромосомы. ДНК в митохондриях собрана в отдельный кольцевой нуклеоид. Некоторые особо длинные органоиды могут содержать до десяти таких молекул. Когда в подобных митохондриях начинается процесс деления, то от них отделяется участок, содержащий в себе один нуклеоид. И в этом можно также найти сходство с бинарным делением бактерий.

Геном микроорганизмов

Процесс самовоспроизведения, во время которого происходит копирование важных данных из одного источника на другой, называют репликацией. Результатом этого действия (свойственного в том числе и для клеток бактерий) является создание себе подобной структуры. Участниками репликации (репликонами) у прокариотов считаются:

  • кольцевая молекула ДНК,
  • плазмиды.

Нуклеотиды ДНК у клеток бактерий расположены в определенной последовательности. Такое строение позволяет выстроить порядок аминокислот в белке. В каждом гене содержится уникальное число и расстановка нуклеотидов.

Все свойства и особенности прокариот определены их комплексом генов (генотипом). Если вести речь о микроорганизмах, то для них генотип и геном являются практически синонимами.

Фенотип является результатом взаимодействия совокупности генов и условий обитания. Он находится в зависимости от конкретных условий окружающей среды, но контролируется непосредственно генотипом. Это обусловлено тем, что все возможные изменения уже определены набором генов, составляющим участок кольцевой молекулы ДНК.

Генотип может меняться не только в зависимости от влияния окружающей среды. К его модификации могут приводить различные мутации или перестановки генов в строении молекулы ДНК. Исходя из этого, выделяют ненаследственную (средовую) изменчивость и наследственную (модификационную) форму изменений генотипа. Если нуклеотиды в кольцевой молекуле ДНК перестроились или были частично утеряны под воздействием мутации, то такое строение будет необратимым. А когда «виновником» изменений становятся факторы окружающей среды, то с их устранением исчезнут и вновь приобретенные качества.

Бактериальная хромосома

Кольцевая молекула ДНК в клетках различных представителей класса бактерий отличается по размерам. Но имеет схожее строение, как и функции, во всех случаях.

  1. Бактериальная хромосома у прокариотов всегда одна.
  2. Она находится в цитоплазме.
  3. Если в клетках у эукариотов молекула ДНК имеет линейное строение и считается более длинной (в ней имеется до 1010 пар оснований), то у бактерий она замкнута в кольцо. И еще бактериальная хромосома прокариот короче (5106 пар оснований).
  4. В одной кольцевой молекуле ДНК находится информация обо всех нужных функциях для жизнедеятельности бактерий. Эти гены можно поделить на 10 групп (по принципу процессов, которые они контролируют в клетке). Можно отобразить данную классификацию в виде таблицы.
Процессы жизнедеятельности в клетках прокариот Число изученных генов, которые находятся в клетке бактерий и отвечают за определенные процессы
Доставка клетке различных соединений и питательных веществ 92
Проведение синтеза фосфолипидов, жирных и аминокислот, нуклеотидов, витаминов и других соединений 221
Организация работы аппарата по синтезу белков 164
Синтез оболочки 42
Расщепление сложных органических веществ и другие реакции для выработки энергии 138
Катаболизм (переработка, расщепление) макромолекул белков, углеводов и жиров 22
Способность направленного движения к полезным веществам и от раздражителя (хемотаксис), подвижность бактерий в целом 39
Выработка АТФ (универсальная форма химической энергии, присущая любой живой клетке). Как упоминалось ранее, данный процесс у эукариотов протекает в митохондриях и является для этих органоидов основным родом деятельности 15
Репликация нуклеиновых кислот, в том числе и генов 49
Иные гены, в том числе и с неизученными функциями 110

Вообще, одна хромосома способна нести в себе около 1000 известных генов.

Плазмиды

Еще одним репликоном прокариот являются плазмиды. У бактерий они представляют собой молекулы ДНК, имеющие строение в виде двух цепочек, замкнутых в кольцо. В отличие от бактериальной хромосомы они отвечают за кодирование тех «умений» бактерии, которые помогут ей выжить, если вдруг она окажется в неблагоприятных условиях для существования. Они могут автономно воспроизводить себя, поэтому в цитоплазме может быть несколько копий плазмид.

Трансмиссивные репликоны способны передаваться из одной клетки в другую. Они несут в своей кольцевой молекуле ДНК некоторые признаки, которые причисляют к категории фенотипических изменений:

  • выработка устойчивости к антибиотикам;
  • способность продуцировать колицины (белковые вещества, способные уничтожать микроорганизмы того же рода, что послужили источником их возникновения);
  • переработка сложных органических веществ;
  • синтез антибиотических веществ;
  • способность проникать в организм и вызывать заболевания;
  • возможность преодолевать защитные механизмы, размножаться и распространяться в организме;
  • умение вырабатывать токсины.

Последние три «навыка» называют факторами патогенности, знания о которых содержит в себе кольцевая молекула ДНК плазмид. Именно благодаря этим факторам болезнетворные бактерии становятся опасными для человеческого организма.

Таким образом, кольцевая молекула ДНК, имеющаяся у всех прокариот, одна несет в себе целый комплекс навыков, полезных для их выживания и жизнедеятельности.