Виды взаимосвязей между признаками. Виды связи между переменными Какие виды связи между переменными вы знаете

1. Значение изучения темы (актуальность изучаемой проблемы). Знание методов оценки взаимосвязи между отдельными признаками

дает возможность решать одну из кардинальных задач любого нау чного исследования: возможность предвидеть, прогнозировать развитие ситуации при изменении тех или иных известных характеристик объекта исследования.

2. Цели обучения: Знать:

- понятия корреляционной и функциональной зависимостей;

- понятия прямой и обратной корреляционной связи;

- понятие коэффициента корреляции;

- методики расчета коэффициентов корреляции Пирсона и Спир-

- использование коэффициентов корреляции в медицине и здраво-

охранении.

- отобразить численные данные на корреляционном поле;

- оценить силу и направление связи по величине коэффициента

корреляции;

- правильно выбрать метод корреляционного или регрессионного анализа для оценки имеющихся данных.

- методиками расчета коэффициентов корреляции Пирсона и

Спирмэна;

- навыками представления численных данных на корреляционном

3. Основные понятия и положения темы

Одной из задач большинства медико-биологических исследований, является выявление взаимной связи одного или нескольких явлений.

Свет в окне может означать (с той или иной вероятностью), что хозяева находятся дома, кашель с мокротой может означать заболевание хроническим бронхитом. Если в серии повторяющихся наблюдений один из признаков (или его часть) появляется одновременно с другим чаще, чем можно объяснить случайным стечением обстоятельств, то это служит основанием говорить о взаимосвязи, сопряженности появления этих признаков.

Постановка задачи в такого рода исследованиях обычно выглядит следующим образом: определить наличие и силу статистической связи какоголибо признака от одного или нескольких других признаков. Знание взаимосвязи отдельных признаков дает возможность решать одну из основных задач любого научного исследования : возможность предвидеть, прогнозировать раз-

витие ситуации при изменении тех или иных известных характеристик объекта исследования.

Термин зависимость при статистической обработке медикобиологических исследований должен использоваться весьма осторожно. С помощью статистических методов можно дать только формальную оценку взаимосвязи. Попытки механически перенести данные статистических расчетов в объективную реальность могут привести к ошибочным выводам.

Например, утверждение: «Чем громче утром кричат воробьи, тем выше встает солнце», несмотря на явную несуразность, с точки зрения формальной статистики, вполне правомерно. Таким образом, термин «зависимость» в статистическом анализе подразумевает только статистическую оценку взаимосвязи.

Любые явления в окружающем нас мире могут быть связаны прямой или обратной связью. Эта характеристика называется направленностью связи.

По направленности связь может быть прямой или обратной.

Прямая (или положительная) связь характеризует зависимость, при которой увеличение или уменьшение значения одного признака ведет, соответственно, к увеличению или уменьшению – второго. Например, при увеличение температуры возрастает давление газа (при сохранении неизменным его объема). При уменьшении температуры – снижается и давление.

Обратная (или отрицательная) связь характеризуется такой зависи-

мостью, когда при увеличении одного признака второй уменьшается или, наоборот, при уменьшении одного, второй – увеличивается. Обратная зависимость или обратная связь является основой нормального регулирования почти всех процессов жизнедеятельности любого организма.

По характеру связь может быть функциональной или корреляционной (статистической).

Функциональная зависимость – такой вид зависимости, когда каждому значению одного признака соответствует точное значение другого (зависимость может быть задана функцией). Например: взаимосвязь радиуса и длины окружности. Такую зависимость можно считать полной (исчерпывающей). Она полностью объясняет изменение одного признака изменением другого. Этот вид связи характерен для объектов, являющихся точкой приложения точных наук. В медико-биологических исследованиях сталкиваться с функциональной связью приходится крайне редко, поскольку объекты исследований имеют большую индивидуальную изменчивость. С другой стороны, характеристики биологических объектов зависят, как правило, от комплекса большого числа сложных взаимосвязей и не могут быть сведены к отношению двух или трех факторов.

Корреляционная зависимость – существует в том случае, когда при изменении величины одного признака наблюдается тенденция соответствующего изменения значений другого признака.

Например, при изменении роста человека меняется и масса тела. Однако, эта зависимость не является полной, т.е. функциональной. У людей с оди-

наковым ростом может быть разная масса тела, поскольку на нее влияют и многие другие факторы (питание, здоровье и т.п.). При оценке статистических связей можно говорить только о тенденции, когда возрастание одного признака вызывает тенденцию возрастания или уменьшения другого признака.

Корреляционная связь описывается с помощью различных статистических характеристик. Выбор характеристики для определения взаимосвязи обусловлен видом исследуемых признаков, способами их группировки и предполагаемым характером связи. Подчас, для выявления реально существующих взаимосвязей достаточно правильно составить статистическую таблицу распределения или построить наглядный график этого распределения.

Корреляционный анализ занимается измерением степени связи между двумя переменными (х и у). Вначале предполагаем, что как х, так и у - количественные величины, например, рост и вес.

Предположим, что есть пара величин (х, у), измеренных у каждого из пациентов в выборке. Мы можем отметить точку, соответствующую паре ве-

личин каждого пациента, на двухмерном графике рассеяния точек (рис

1,2,3). Обычно переменную х располагают на горизонтальной оси, а у - на вертикальной в той же диаграмме. Размещая точки для всех пациентов, получаем график рассеяния точек (корреляционное поле ), который говорит о взаимосвязи между этими двумя переменными.

В результате могут возникнуть следующие ситуации:

Рисунок 1. Положительная (прямая) корреляционная связь

Рисунок 2. Отрицательная (обратная) корреляционная связь

Рисунок 3. Корреляционная связь отсутствует

Если на графике рассеяния точек построить прямую линию, наилучшим образом описывающую изображенные данные (расстояния от точек до прямой минимальны), то полученная прямая является линией регрессии . Расчет коэффициентов корреляции дает численную характеристику того, насколько близко находятся наблюдения к линии регрессии. Основными коэффициентами корреляции являются коэффициент корреляции Пирсона и коэффициент корреляции Спирмэна .

Свойства коэффициентов корреляции:

Значения коэффициента корреляции изменяются в пределах от -1

до +1 .

Знак коэффициента корреляции показывает направление связи, увеличивается (положительный r , прямая связь) или уменьшается (отрицательный r , обратная связь) одна переменная, по мере того как увеличивается другая.

Величина коэффициента корреляции указывает, как близко расположены точки к прямой линии. В частности, если r = +1 или r = -1 , то имеется абсолютная (функциональная) корреляция по всем точкам, лежащим на линии (рис 1, рис. 2); если r = 0 , то линейной корреляции нет (рис. 3). Чем ближе r к крайним точкам (±1), тем больше степень линейной связи.

Коэффициент корреляции безразмерен, т.е. не имеет единиц из-

Величина коэффициента корреляции действительна только в диапазоне значений х и у в выборке. Невозможно заключить, что коэффициент будет иметь ту же величину при рассмотрении значений х или у, значительно больших, чем в выборке.

Неважно, какой из признаков обозначить за х , а какой за у; х и у могут заменять друг друга, не влияя на величину r (rху ~rух ).

Корреляция между х и у необязательно означает соотношение «причины и следствия».

Следует отметить, что в случае биологических факторов тот или иной характер связи сохраняется, как правило, только в определенном интервале изменений признаков. За пределами этого интервала связь может ослабнуть, стать прямо противоположной по направлению либо совсем исчезнуть.

Например, при увеличении возраста ребенка сила скелетной мускулатуры увеличивается. В зрелом возрасте такой связи уже нет. А в старших возрастных группах тенденция становится обратной.

Сила корреляционной связи между признаками оценивается по величине коэффициента корреляции согласно Таблице 1 :

Таблица 1

Распределение значений коэффициента линейной корреляции

Характеристики связи

Обратная

Связи нет

от 0 до -0,3

от 0,3 до 0,7

от - 0,3 до -0,7

от - 0,7 до - 1

Полная (функциональная)

Случаи, в которых не следует рассчитывать коэффициент линейной корреляции:

получено нелинейное соотношение между признаками, например, квадратичное соотношение (рис. 4,а);

данные включают более одного наблюдения по каждому пациенту;

присутствуют аномальные значения (рис. 4,б);

данные содержат подгруппы пациентов, для которых средние уровни наблюдений, по крайней мере, по одной из переменных, отличаются (рис. 4,в).

Рисунок 4. Диаграммы, показывающие, когда не следует рассчитывать коэффициент корреляции, (а) - соотношение нелинейно, (б) - при наличии выброса (выбросов), (в) - данные состоят из подгрупп.

Коэффициент корреляции Пирсона

Коэффициент корреляции Пирсона () определяет силу и направле-

ние связи только для количественных данных (x, y – значения исследуемых признаков, n –количество пар данных):

∑ (∑)(∑)

Условия для расчета коэффициента корреляции Пирсона:

исследуемые признаки являются количественными;

выборка состоит из независимых пар величин х и у; по крайней мере, одна из этих двух переменных нормально распределена.

Достоверность коэффициента корреляции устанавливается по ве-

личине средней ошибки. Поскольку коэффициент корреляции в клинических исследованиях рассчитывается обычно для ограниченного числа наблюдений, нередко возникает вопрос о надежности полученного коэффициента. С этой целью определяют среднюю ошибку коэффициента корреляции. При достаточно большом числе наблюдений (больше 100) средняя ошибка коэффициента корреляции () вычисляется по формуле:

n – число наблюдений.

В том случае, если число наблюдений меньше 100 точнее определять среднюю ошибку коэффициента корреляции, по формуле:

С достаточной для медицинских исследований надежностью о наличии той или иной степени связи можно утверждать только тогда, когда величина коэффициента корреляции превышает или равняется величине трех своих ошибок (r ≥3m r ). Обычно это отношение коэффициента корреляции (r ) к его средней ошибке (m r ) обозначают буквой t r :

Если t r ≥3, то коэффициент корреляции является статистически значи-

Пример расчета коэффициента корреляции Пирсона

Необходимо определить, существует ли связь между количеством часов, посвященных студентом подготовке к тестовому экзамену по статистике и итоговым количеством правильных ответов (и соответственно итоговой оценкой). В тестирование включает в себя 100 вопросов из банка тестовых заданий. В таблице приведены данные о 6 случайно выбранных студентах.

Очевидно, что количество часов напрямую отражается на финальной оценке. Переменная «Часы подготовки» (х ) является независимой переменной, т.к. она приводит к наблюдаемой вариации переменной «Балл на экзамене» (у ). Причинная связь между зависимыми и независимыми переменными существует только в одном направлении: Независимая переменная (х)→ Зависимая переменная (у). В обратном направлении эта связь не работает.

Коэффициент корреляции Пирсона (r) вычисляется при помощи следующего уравнения

∑ (∑)(∑)

Таблица, приведенная ниже, поможет разбить это уравнение на несколько несложных вычислений.

Часы изучения

Балл на экза-

∑ =79

Используя эти значения и n=6 (общее количество студентов), получаем:

∑ (∑)(∑)

Теперь рассчитаем среднюю ошибку коэффициента корреляции

√ √

Установим, надежной, ли является установленная нами связь

Т.к. t r ≥3 , то коэффициент корреляции является статистически значи-

Таким образом, между числом часов, посвященных изучению предмета, и экзаменационной оценкой существует статистически значимая сильная положительная (прямая) корреляция. Отсюда следует, что экзаменационные результаты можно предугадать на основе определенного количества часов, посвященных изучению предмета.

Коэффициент корреляции Спирмэна

Ранговый коэффициент корреляции Спирмэна (rs ) – непараметриче-

ский аналог корреляционного коэффициента Пирсона.

Применение этого коэффициента корреляции может быть рекомендовано в случаях:

когда необходимо быстро ориентировочно определить связь между какими-то признаками;

если необходимо оценить связь между качественными (ранго-

выми) и количественными признаками или только между качественными признаками;

когда распределение значений учетных признаков (в том числе и количественных) не соответствует нормальному распределению или рас-

пределение неизвестно.

Вычисление:

1. Располагают величины х в возрастающем порядке, начиная с наименьшей величины, и придают им последовательные ранги (номера 1, 2, 3, .., n). Равные варианты получают среднее значение из суммы их порядковых номеров.

2. Подобным образом ранжируют у .

3. Рассчитывается r s - коэффициент корреляции между рангами х и у по формуле:

где (

) – разности между рангами соответствующих пар y и x;

n – число сопоставляемых пар.

Пример расчета коэффициента корреляции Спирмэна.

Необходимо определить по Таблице 2 , существует ли связь между количеством часов, посвященных студентом подготовке к тестовому экзамену по статистике, и итоговым количеством правильных ответов (и, соответственно, итоговой оценкой). Тестирование включает в себя 100 вопросов из банка тестовых заданий.

Составляем вариационный ряд x и ранжируем:

Составляем вариационный ряд y и ранжируем:

Для удобства расчета заполняем следующую таблицу:

Ry - Rx

(Ry - Rx ) 2

Таким образом, получено, что исследуемая корреляционная связь является прямой и сильной.

В ходе корреляционного анализа или анализа корреляционной связи решается целая группа взаимосвязанных задач:

1) Установление направления (прямая или обратная) и формы (линейная или нелинейная) корреляционной связи.

2) Оценка тесноты (силы, плотности) корреляционной связи.

3) Оценка репрезентативности статистических оценок взаимосвязей, полученных по выборочным данным (величина ошибки, доверительный интервал, уровень значимости).

4) Установление величины детерминации (доли взаимовлияния) коррелируемых факторов.

Таким образом, статистические методы изучения связи между переменными зависят от:

характера переменных (качественные, количественные)

характера распределения количественных переменных (нормальное,

ненормальное, неизвестное)

числа наблюдений (большое, малое)

взаимоотношения между наблюдениями (зависимые, независимые). Статистические методы изучения связи между переменными могут

однофакторными, т.е. принимающими во внимание только взаимоотношения между двумя анализируемыми переменными

многофакторными, т.е. учитывающими влияние на изучаемую связь между двумя переменными со стороны некоторых других переменных.

Понятие о регрессионном анализе

Регрессия определяет математическую зависимость между зависи-

мой переменной (отклик) и одной или более независимыми переменными (предикторами).

Регрессионный анализ с помощью коэффициента регрессии позволяет количественно прогнозировать изменения одной переменной при изменении другой.

Для описания связи могут использоваться различные математические функции, основными из которых являются:

■ линейная

экспоненциальная

■ логистическая

Простая линейная регрессия или множественная регрессия могут применяться для непрерывных признаков, например, давление, вес.

Логистическая регрессия применима в тех случаях, когда зависимые признаки являются бинарными (например, умер/жив, выздоровел/не выздоровел).

Линейная регрессия

Математическое уравнение, которое оценивает линию простой линейной регрессии:

х – называется предиктором – независимой или объясняющей переменной. Для данной величины х, Y - значение переменной у (называемой зави-

симой, выходной переменной, или переменной отклика), которое расположено на линии оценки. Это есть значение, которое мы ожидаем для у (в среднем), если мы знаем величину х, и называется она «предсказанное значение у» (рис. 5).

а – свободный член (пересечение) линии оценки; это значение Y, когда

b – угловой коэффициент или градиент оценённой линии; он представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем х на одну единицу (рис. 5). Коэффициент b называют коэффициентом регрессии.

Например : при увеличении температуры тела человека на 1о С, частота пульса увеличивается в среднем на 10 ударов в минуту.

Рисунок 5. Линия линейной регрессии, показывающая коэффициент а и угловой коэффициент b (величину возрастания Y при увеличении х на одну единицу)

Математически решение уравнения линейной регрессии сводится к вычислению параметров а и b таким образом, чтобы точки исходных данных корреляционного поля как можно ближе лежали к прямой регрессии .

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого Френсису Гальтону (1889). Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» или «двигался вспять» к среднему росту всех

отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Мы наблюдаем регрессию к среднему при скрининге и клинических исследованиях, когда подгруппа пациентов может быть выбрана для лечения потому, что их уровни определённой переменной, скажем, холестерина, крайне высоки (или низки). Если это измерение через некоторое время повторяется, средняя величина второго считывания для подгруппы обычно меньше, чем при первом считывании, имея тенденцию (т.е. регрессируя) к среднему, подобранному по возрасту и полу в популяции, независимо от лечения, которое они могут получить. Пациенты, набранные в клиническое исследование на основе высокого уровня холестерина при их первом осмотре, таким образом, вероятно, покажут в среднем падение уровня холестерина при втором осмотре, даже если в этот период они не лечились.

Часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.

Насколько хорошо линия регрессии согласуется с данными, можно судить, рассчитав коэффициент R (обычно выраженный в процентах и называемый коэффициентом детерминации), который равняется квадрату коэффициента корреляции (r2 ). Он представляет собой долю или процент дисперсии у, который можно объяснить связью с х, т.е. долю вариации признакарезультата, сложившуюся под влиянием независимого признака. Может принимать значения в диапазоне от 0 до 1, или соответственно от 0 до 100%. Разность (100% - R) представляет собой процент дисперсии у, который нельзя объяснить этим взаимодействием.

Соотношение между ростом (измеренным в см) и систолическим артериальным давлением (САД, измеренным в мм рт. ст.) у детей. Мы провели анализ парной линейной регрессии зависимости САД от роста (рис. 6). Имеется существенное линейное соотношение между ростом и САД.

Рисунок 6. Двумерный график, показывающий соотношение между систолическим артериальным давлением и ростом. Изображена оценённая линия регрессии, систолическое артериальное давление.

Уравнение линии оценённой регрессии имеет следующий вид: САД = 46,28 + 0,48 х рост.

В этом примере свободный член не представляет интереса (рост, равный нулю, явно вне диапазона величин, наблюдаемых в исследовании). Однако мы можем интерпретировать угловой коэффициент; предсказано, что у этих детей САД увеличивается в среднем на 0,48 мм рт.ст. при увеличении роста на один сантиметр

Мы можем применить уравнение регрессии для предсказания САД, которое мы ожидаем у ребёнка при данном росте. Например, ребёнок ростом 115 см имеет предсказанное САД, равное 46,28 + (0,48 х 115)=101,48 мм рт. ст., ребёнок ростом 130 имеет предсказанное САД, 46,28 + (0,48 х 130) =

108,68 мм рт. ст.

При расчете коэффициента корреляции, установлено, что он равен 0,55, что указывает на прямую корреляционную связь средней силы. В этом случае коэффициент детерминации r 2 = 0,55 2 = 0,3 . Таким образом, можно сказать, что доля влияния роста на уровень артериального давления у детей не превышает 30%, соответственно на долю других факторов приходится 70% влияния.

Линейная (простая) регрессия ограничивается рассмотрением связи между зависимой переменной и только одной независимой переменной. Если в связи присутствует более одной независимой переменной, тогда нам необходимо обратиться к множественной регрессии. Уравнение для такой регрессии выглядит так:

y = a + bx1 +b2 x2 +.... + bn хn

Можно интересоваться результатом влияния нескольких независимых переменных х1 , х 2 , .., х n на переменную отклика у. Если мы полагаем, что эти х могут быть взаимозависимы, то не должны смотреть по отдельности на эффект изменения значения одного х на у, но должны одновременно принимать во внимание величины всех других х.

Пример Поскольку между ростом и массой тела ребёнка существует сильная

зависимость, можно поинтересоваться, изменяется ли также соотношение между ростом и систолическим артериальным давлением, если принять во внимание также и массу тела ребёнка и его пол. Множественная линейная регрессия позволяет изучить совместный эффект этих нескольких независимых переменных на у.

Уравнение множественной регрессии в этом случае может иметь такой вид:

САД=79,44 –(0,03 х рост)+ (1,18 х вес) + (4,23 х пол)*

* - (для признака пол используют значения 0 – мальчик, 1 - девочка) Согласно этому уравнению, девочка, рост которой 115 см и масса те-

ла 37 кг, будет иметь прогнозируемое САД:

САД = 79,44 – (0,03 х 115) + (1,18 х 37) + (4,23 х 1) = 123,88 мм.рт.ст.

Логистическая регрессия очень похожа на линейную; её применяют, когда есть интересующий нас бинарный исход (т.е. наличие/отсутствие симптома или субъекта, который имеет/не имеет заболевания) и ряд предикторов. Из уравнения логистической регрессии можно определить, какие предикторы влияют на исход, и, используя значения предикторов пациента, оценить вероятность того, что он/она будет иметь определённый исход. Например: возникнут или нет осложнения, будет лечение эффективным или не будет.

Начинают создания бинарной переменной, чтобы представить эти два исхода (например, «имеет болезнь»=1, «не имеет болезни»=0). Однако мы не можем применить эти два значения как зависимую переменную в анализе линейной регрессии, поскольку предположение нормальности нарушено, и мы не можем интерпретировать предсказанные величины, которые не равны нулю или единице. Фактически, вместо этого мы берём вероятность того, что субъект классифицируется в ближайшую категорию (т.е. «имеет болезнь») зависимой переменной, и чтобы преодолеть математические трудности, применяют логистическое, преобразование, в уравнении регрессии - натуральный логарифм отношения вероятности «болезни» (p) к вероятности «нет болезни» (1-p).

Интегративный процесс, называемый методом максимального правдоподобия, а не обычная регрессия (так как мы не можем применить процедуру линейной регрессии) создаёт из данных выборки оценку уравнения логистической регрессии

logit (p) = a + bx1 +b2 x2 +.... + bn хn

Logit (р) - оценка значения истинной вероятности того, что пациент с индивидуальным набором значений для х 1 ... х n имеет заболевание;

а - оценка константы (свободный член, пересечение);

b 1 , b 2 , ... ,b n - оценки коэффициентов логистической регрессии.

4. Вопросы по теме занятия:

1. Дайте определение функциональной и корреляционной связи.

2. Приведите примеры прямой и обратной корреляционной связи.

3. Укажите размеры коэффициентов корреляции при слабой, средней и сильной связи между признаками.

4. В каких случаях применяется ранговый метод вычисления коэффициента корреляции?

5. В каких случаях применяется расчет коэффициента корреляции Пирсо-

6. Каковы основные этапы вычисления коэффициента корреляции ранговым методом?

7. Дайте определение «регрессии». В чем сущность метода регрессии?

8. Охарактеризуйте формулу уравнения простой линейной регрессии.

9. Дайте определение коэффициента регрессии.

10. Какой можно сделать вывод, если коэффициент регрессии веса по росту равен 0,26кг/см?

11. Для чего используется формула уравнения регрессии?

12. Что такое коэффициент детерминации?

13. В каких случаях используется уравнение множественной регрессии.

14. Для чего применяется метод логистической регрессии?

5. Тестовые задания:

1. ТЕРМИН «КОРРЕЛЯЦИЯ» В СТАТИСТИКЕ ПОНИМАЮТ КАК

1) связь, зависимость

2) отношение, соотношение

3) функцию, уравнение

4) коэффициент

2. СВЯЗЬ МЕЖДУ ПРИЗНАКАМИ МОЖНО СЧИТАТЬ СРЕДНЕЙ ПРИ ЗНАЧЕНИИ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

1) r = 0,13

2) r = 0,45

3) r = 0,71

4) r = 1,0

3. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ R = - 0,82 ГОВОРИТ О ТОМ, ЧТО КОРРЕЛЯЦИОННАЯ СВЯЗЬ

1) прямая, средней силы

2) обратная, слабая

4) обратная, сильная

4. ПРИ ЗНАЧЕНИИ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ В ДИАПАЗОНЕ ОТ 0 ДО 0,3 СИЛА СВЯЗИ ОЦЕНИВАЕТСЯ КАК

1) слабая

2) средняя

3) сильная

4) полная

5. СВЯЗЬ МЕЖДУ ПРИЗНАКАМИ МОЖНО СЧИТАТЬ СИЛЬНОЙ ПРИ ЗНАЧЕНИИ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

1) r = - 0,25

2) r = 0,62

3) r = - 0,95

4) r = 0,55

6. ЗАВИСИМОСТЬ, ПРИ КОТОРОЙ УВЕЛИЧЕНИЕ ИЛИ УМЕНЬШЕНИЕ ЗНАЧЕНИЯ ОДНОГО ПРИЗНАКА ВЕДЕТ К УВЕЛИЧЕНИЮ ИЛИ УМЕНЬШЕНИЮ – ВТОРОГО, ХАРАКТЕРИЗУЕТ СЛЕДУЮЩИЙ ВИД СВЯЗИ

2) обратная

3) полная

4) неполная

7. ЗАВИСИМОСТЬ, ПРИ КОТОРОЙ УВЕЛИЧЕНИЕ ОДНОГО ПРИЗНАКА ДАЕТ УМЕНЬШЕНИЕ ВТОРОГО, ХАРАКТЕРИЗУЕТ СЛЕДУЮЩИЙ ВИД КОРРЕЛЯЦИОННОЙ СВЯЗИ

2) обратная

3) полная

4) неполная

8. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ ПИРСОНА ОПРЕДЕЛЯЕТ

1) статистическую значимость различий между переменными

2) степень разнообразия признака в совокупности

3) силу и направление связи между зависимой и независимой переменными

4) долю дисперсии результативного признака объясняемую влиянием независимых переменных

9. УСЛОВИЕМ ДЛЯ РАСЧЕТА КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ ПИРСОНА ЯВЛЯЕТСЯ

1) распределение переменных неизвестно

2) нормальное распределение по крайней мере, одной из двух переменных

3) по крайней мере, одна из двух переменных измеряется в ранговой шкале

4) отсутствует нормальное распределение переменных

10. РАНГОВЫЙ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ СПИРМЭНА РАССЧИТЫВАЕТСЯ, КОГДА

1) присутствует нормальное распределение переменных

2) необходимо оценить связь между качественными и количественными признаками

3) необходимо определить статистическую значимость различий между переменными

4) необходимо оценить степень разнообразия признака в совокупности

11. ЗАВИСИМОСТЬ, КОГДА КАЖДОМУ ЗНАЧЕНИЮ ОДНОГО ПРИЗНАКА СООТВЕТСТВУЕТ ТОЧНОЕ ЗНАЧЕНИЕ ДРУГОГО, НАЗЫВАЕТСЯ

1) прямой

2) обратной

3) корреляционной

4) функциональной

12. ЗАВИСИМОСТЬ, КОГДА ПРИ ИЗМЕНЕНИИ ВЕЛИЧИНЫ ОДНОГО ПРИЗНАКА ИЗМЕНЯЕТСЯ ТЕНДЕНЦИЯ (ХАРАКТЕР) РАСПРЕДЕЛЕНИЯ ЗНАЧЕНИЙ ДРУГОГО ПРИЗНАКА, НАЗЫВАЕТСЯ

1) прямой

2) обратной

3) корреляционной

4) функциональной

13. ДЛЯ ИЗОБРАЖЕНИЯ КОРРЕЛЯЦИОННОЙ ЗАВИСИМОСТИ ИСПОЛЬЗУЕТСЯ ГРАФИК

1) линейный

2) график рассеяния точек

3) радиальный

4) динамический

14. ЕСЛИ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ РАВЕН ЕДИНИЦЕ, ТО СВЯЗЬ ЯВЛЯЕТСЯ

1) сильной, прямой

2) сильной обратной

3) средней, прямой

4) полной (функциональной), прямой

15. СВЯЗЬ МЕЖДУ Y И X МОЖНО ПРИЗНАТЬ БОЛЕЕ СУЩЕСТВЕННОЙ ПРИ СЛЕДУЮЩЕМ ЗНАЧЕНИИ ЛИНЕЙНОГО КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

1) r = 0,35

2) r = 0,15

3) r = - 0,57

4) r = 0,46

16. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ ИСПОЛЬЗУЕТСЯ ДЛЯ ИЗУЧЕНИЯ

1) взаимосвязи явлений

2) развития явления во времени

3) структуры явлений

4) статистической значимости различий между явлениями

17. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ МОЖЕТ ПРИНИМАТЬ ЗНАЧЕНИЯ

1) от 0 до 1

2) от -1 до 0

3) от -1 до 1

ПОКАЗЫВАЕТ, ЧТО

1) с увеличением признака х на 1 признак у увеличивается на 0,678

2) с увеличением признака х на 1 признак у увеличивается на 0,016

3) с увеличением признака х на 1 признак у уменьшается на 0,678

4) с увеличением признака х на 1 признак у уменьшается на 0,016

22. НЕЗАВИСИМАЯ ПЕРЕМЕННАЯ В УРАВНЕНИИ РЕГРЕССИИ НАЗЫВАЕТСЯ

1) вариантой

2) уровнем

3) предиктором

4) переменной отклика Кендела

4) Чупрова

26. ДОЛЮ ВАРИАЦИИ ПРИЗНАКА-РЕЗУЛЬТАТА, СЛОЖИВШУЮСЯ ПОД ВЛИЯНИЕМ НЕЗАВИСИМОГО ПРИЗНАКА ОБЪЯСНЯЕТ КОЭФФИЦИЕНТ

1) корреляции Пирсона

2) корреляции Спирмэна

3) детерминации

4) вариации

27. ДЛЯ ИЗУЧЕНИЯ СВЯЗИ, В КОТОРОЙ ПРИСУТСТВУЕТ БОЛЕЕ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ ИСПОЛЬЗУЕТСЯ

1) линейная регрессия

2) множественная регрессия

3) ранговая корреляция Спирмэна

4) расчет темпа прироста

28. ДЛЯ РАСЧЕТА КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ СПИРМЭНА НЕОБХОДИМО

1) расположить переменные в порядке возрастания

2) расположить переменные в порядке убывания

3) возвести переменные в квадрат

4) присвоить переменным в порядке возрастания последовательные ранги (номера 1, 2, 3, .., n )

29. ЗАВИСИМОСТЬ ВЕСА ОТ РОСТА ЧЕЛОВЕКА (РОСТО-ВЕСОВОЙ ИНДЕКС) ОПИСЫВАЕТСЯ ПРИ ПОМОЩИ

1) логистической регрессии

2) множественной регрессии

3) экспоненциальной регрессии

4) линейной регрессии

30. ЗАВИСИМОСТЬ ПОЛОЖИТЕЛЬНОГО ИЛИ ОТРИЦАТЕЛЬНОГО РЕЗУЛЬТАТА ЛЕЧЕНИЯ ОТ РЯДА ФАКТОРОВ ОПИСЫВАЕТСЯ ПРИ ПОМОЩИ

1) логистической регрессии

2) множественной регрессии

3) экспоненциальной регрессии

4) линейной регрессии

31. КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ ИЗМЕРЯЕТСЯ В

1) процентах

2) тех же единицах, что и изучаемый признак

3) промилле

4) не имеет единиц измерения

32. ИЗ НИЖЕПЕРЕЧИСЛЕННЫХ ВЕЛИЧИН ДЛЯ ОПРЕДЕЛЕНИЯ РАЗМЕРА ОДНОГО ПРИЗНАКА ПРИ ИЗМЕНЕНИИ ДРУГОГО НА ЕДИНИЦУ ИЗМЕРЕНИЯ ПРИМЕНЯЕТСЯ

1) среднеквадратическое отклонение

2) коэффициент корреляции

3) коэффициент регрессии

4) коэффициент вариации

6. Ситуационные задачи по теме

Задача №1

Уравнение регрессии описывает зависимость систолического давления от роста, веса и пола:

y = 79,44 – 0,03х1 + 1,18х2 + 4,23х3

где х 1 – рост; х 2 – вес; х 3 – пол.

1. Рассчитайте ожидаемое систолическое давление у мальчика ростом 130см и весом 30кг. Как называется данный вид уравнения регрессии?

2. Рассчитайте ожидаемое систолическое давление у девочки ростом 111 см и весом 17кг. Как называется данный вид уравнения регрессии?

Задача №2

В таблице ниже представлен фонд заработной платы оплата 10 команд Высшей хоккейной лиги (в миллионах) за 2 года с указанием числа побед за этот период.

1. Вычислите коэффициент корреляции Пирсона, охарактеризуйте силу и направление корреляционной связи.

2. Вычислите коэффициент корреляции Спирмэна, охарактеризуйте силу и направление корреляционной связи.

Задача №3

В таблице приведены данные роста и веса студентов 117 группы КрасГМУ. Рассчитать коэффициент корреляции Спирмэна и выяснить, существует ли корреляционная зависимость между этими данными, ее силу и направление.

Задача №4

В таблице приведены данные роста и веса студентов 118 группы КрасГМУ. Рассчитать коэффициент корреляции Спирмэна и выяснить, существует ли корреляционная зависимость между этими данными, ее силу и направление.

7. Перечень практических умений:

1. Правильно выбрать метод корреляционного анализа, исходя из характера имеющихся данных.

3. Оценить силу корреляционной связи.

5. Правильно выбрать метод регрессионного анализа, исходя из характера имеющихся данных.

6. Использовать уравнения регрессии для прогнозирования результатов исследования.

8. Примерная тематика НИРС

Главными компонентами любого эксперимента являются:

1) испытуемый (исследуемый субъект или группа);

2) экспериментатор (исследователь);

3) стимуляция (выбранный экспериментатором способ воздействия на испытуемого);

4) ответ испытуемого на стимуляцию (его психическая реакция);

5) условия опыта (дополнительные к стимуляции воздействия, которые могут влиять на реакции испытуемого).

Ответ испытуемого является внешней реакцией, по которой можно судить о протекающих в его внутреннем, субъективном пространстве процессах. Сами эти процессы есть результат воздействия на него стимуляции и условий опыта.

Если ответ (реакцию) испытуемого обозначить символом R, а воздействия на него экспериментальной ситуации (как совокупности воздействий стимуляции и условий опыта) - символом S, то их соотношение можно выразить формулой R = f (S). То есть реакция есть функция от ситуации . Но эта формула не учитывает активную роль психики, личности человека (P). В действительности реакция человека на ситуацию всегда опосредована психикой, личностью. Таким образом, соотношение между основными элементами эксперимента может быть зафиксировано следующей формулой: R = f (Р, S). П. Фресс и Ж. Пиаже в зависимости от задач исследования выделяют три классических типа отношений между этими тремя компонентами эксперимента : 1) функциональные отношения; 2) структурные отношения; 3) дифференциальные отношения.

Функциональные отношения характеризуются вариативностью ответов (R) испытуемого (Р) при систематических качественных или количественных изменениях ситуации (S). Графически эти отношения можно представить следующей схемой (рис. 2).

Примеры функциональных отношений, выявленных в экспериментах: изменение ощущений (R) в зависимости от интенсивности воздействия на органы чувств (S); объем запоминания (R) от числа повторений (S); интенсивность эмоционального отклика (R) на действие различных эмоциогенных факторов (S); развитие адаптационных процессов (R) во времени (S) и т. п.

Структурные отношения раскрываются через систему ответов (R 1 , R 2 , R n) на различные ситуации (S 1 S 2 , S n). Отношения между отдельными ответами структурируются в систему, отражающую структуру личности (Р). Схематически это выглядит так (рис. 3).

Примеры структурных отношений: система эмоциональных реакций (R 1 R 2 , R n) на действие стрессоров (S 1, S 2 , S n); эффективность решения (R 1 ,R 2 ,R n) различных интеллектуальных задач (S 1 , S 2 , S n) и т. п.

Дифференциальные отношения выявляются через анализ реакций (R 1 , R 2 , R n) разных испытуемых (P 1 , P 2 , P n) на одну и ту же ситуацию (S). Схема этих отношений такова (рис. 4).



Примеры дифференциальных отношений: разница скорости реакции у разных людей, национальные различия в экспрессивном проявлении эмоций и т. п.

Итак, такие компоненты экспериментального исследования как воздействие экспериментальной ситуации, действий и личности экспериментатора, доступный для наблюдения ответ испытуемого и его психическая реакция – являются факторами, входящими в эксперимент. Для уточнения соотношения всех факторов, введено понятие "переменная".

ПЕРЕМЕННЫЕ – параметр реальности, который измеряется в экспериментальном исследовании. Различают:

Выделяют три вида переменных: независимые, зависимые и дополнительные.

I. Независимые переменные. Фактор, изменяемый самим экспериментатором, называется независимой переменной (НП): условия, в которых осуществляется деятельность испытуемого; характеристика заданий, выполнение которых требуется от испытуемого; характеристики самого испытуемого (возрастные, половые, иные различия испытуемых, эмоциональные состояния и другие свойства испытуемого или взаимодействующих с ним людей); формирующая программа и др. воздействия. Поэтому принято выделять следующие типы НП: ситуационные, инструктивные и персональные.

Виды независимых переменных.

1) Ситуационные НП : различные физические параметры (освещенность, температура, уровень шума, а также размер помещения, обстановка, размещение аппаратуры и т. п.), социально-психологические параметры (выполнение экспериментального задания в изоляции, в присутствии экспериментатора, внешнего наблюдателя или группы людей). В.Н. Дружинин указывает на особенности общения и взаимодействия испытуемого и экспериментатора как на особую разновидность ситуационных НП. Этому аспекту уделяется большое внимание. В экспериментальной психологии существует отдельное направление, которое называется "психология психологического эксперимента".



2) Инструктивные НП связаны непосредственно с экспериментальным заданием, его качественными и количественными характеристиками, а также способами его выполнения. Инструктивной НП экспериментатор может манипулировать более или менее свободно. Он может варьировать материал задания (например, числовой, словесный или образный), тип ответа испытуемого (например, вербальный или невербальный), шкалу оценивания и т. п. Большие возможности заключаются в способе инструктирования испытуемых, информирования их о цели экспериментального задания. Экспериментатор может изменять средства, которые предлагаются испытуемому для выполнения задания, ставить перед ним препятствия, использовать систему поощрений и наказаний в ходе выполнения задания и т. д.

3) Персональные НП представляют собой управляемые особенности испытуемого. Обычно в качестве таких особенностей выступают состояния участника эксперимента, которые исследователь может менять, например различные эмоциональные состояния или состояния работоспособности-утомления.

II. Зависимые переменные. Фактор, изменение которого является следствием изменения независимой переменной, называется зависимой переменной (ЗП). Зависимая переменная - это компонент в составе ответа испытуемого, который непосредственно интересует исследователя. В качестве ЗП могут выступать физиологические, эмоциональные, поведенческие реакции и другие психологические характеристики, которые можно зарегистрировать в ходе психологических экспериментов.

Виды зависимых переменных.

1. В зависимости от способа, с помощью которого можно зарегистрировать изменения, выделяют ЗП: наблюдаемые непосредственно; требующие физической аппаратуры для измерения; требующие психологического измерения.

а) К ЗП, наблюдаемым непосредственно , относятся вербальные и невербальные поведенческие проявления, которые четко и однозначно могут быть оценены внешним наблюдателем (отказ от деятельности, плач, определенное высказывание испытуемого и т. п.).

б) К ЗП, требующим физической аппаратуры для регистрации , относятся физиологические (пульс, величина артериального давления и т. д.) и психофизиологические реакции (время реакции, латентное время, длительность, скорость выполнения действий и т. п.).

в) К ЗП, требующим психологического измерения , относятся такие характеристики, как уровень притязаний, уровень развития или сформированности тех или иных качеств, форм поведения и т. п. Для психологического измерения показателей могут быть использованы стандартизированные процедуры - тесты, опросники и т. п. Некоторые поведенческие параметры могут быть измерены, т. е. однозначно распознаны и интерпретированы только специально обученными наблюдателями или экспертами.

2. В зависимости от количества параметров, входящих в зависимую переменную, различают одномерные, многомерные и фундаментальные ЗП.

а) Одномерная ЗП представлена единственным параметром, изменения которого и изучаются в эксперименте (например, сенсомоторной реакции).

б) Многомерная ЗП представлена совокупностью параметров (например, внимательность может оцениваться объемом просмотренного материала, количеством отвлечений, числом правильных и ошибочных ответов и т. д.). Каждый параметр может фиксироваться независимо.

в) Фундаментальная ЗП представляет собой переменную комплексного характера, параметры которой имеют некоторые известные отношения между собой. В этом случае одни параметры выступают как аргументы, а собственно зависимая переменная - как функция. Например, фундаментальное измерение уровня агрессии может рассматриваться как функция ее отдельных проявлений (мимических, вербальных, физических и др.).

Зависимая переменная должна обладать такой базовой характеристикой, как сензитивность. Сензитивность ЗП - это ее чувствительность к изменению уровня независимой переменной. Если при изменении независимой переменной зависимая переменная не изменяется, то последняя несензитивна и проводить эксперимент в таком случае не имеет смысла. Известны два варианта проявления несензитивности ЗП: "эффект потолка" и "эффект пола". "Эффект потолка" наблюдается, например, в том случае, когда предъявляемая задача настолько проста, что ее выполняют все испытуемые независимо от возраста. "Эффект пола", напротив, возникает в том случае, когда задание настолько сложно, что с ним не может справиться ни один из испытуемых.

Существуют два основных способа фиксации изменений ЗП в психологическом эксперименте: непосредственный и отсроченный. Непосредственный способ применяется, например, в экспериментах по кратковременному запоминанию. Экспериментатор непосредственно после повторения ряда стимулов фиксирует их количество, воспроизведенное испытуемым. Отсроченный способ используется в том случае, когда между воздействием и эффектом проходит определенный промежуток времени (например, при определении влияния количества заученных иностранных слов на успешность перевода текста).

III. Дополнительные переменные (ДП) - это сопутствующая стимуляция испытуемого, оказывающая влияние на его ответ. Совокупность ДП состоит, как правило, из двух групп: внешних условий опыта и внутренних факторов. Соответственно их принято называть внешними и внутренними ДП.

а) К внешним ДП относят физическую обстановку опыта (освещенность, температурный режим, звуковой фон, пространственные характеристики помещения), параметры аппаратуры и оборудования (дизайн измерительных приборов, рабочий шум и т. п.), временные параметры эксперимента (время начала, продолжительность и др.), личность экспериментатора.

б) К внутренним ДП относят настроение и мотивацию испытуемых, их отношение к экспериментатору и опытам, их психологические установки, склонности, знания, умения, навыки и опыт в данном виде деятельности, уровень утомления, самочувствие и т. п.

а) В идеале исследователь стремится все дополнительные переменные свести на нет или хотя бы к минимуму, чтобы выделить "в чистом виде" связь между независимой и зависимой переменными. Существует несколько основных способов контроля влияния внешних ДП : 1) элиминация внешних воздействий; 2) константность условий; 3) балансировка; 4) контрбалансировка.

Элиминация внешних воздействий представляет собой наиболее радикальный способ контроля. Он состоит в полном исключении из внешней среды каких бы то ни было внешних ДП. В лаборатории создаются условия, изолирующие испытуемого от звуков, света, вибрационных воздействий и т. п. Наиболее ярким примером может служить эксперимент по сенсорной депривации, проводимый на добровольцах в специальной камере, полностью исключающей поступление каких-либо раздражителей из внешней среды. Следует отметить, что элиминировать воздействия ДП практически невозможно, да и не всегда нужно, так как результаты, полученные в условиях элиминации внешних воздействий, вряд ли могут быть перенесены в реальность.

Следующий способ контроля - создание константных условий . Суть этого способа состоит в том, чтобы сделать воздействия ДП постоянными и одинаковыми для всех испытуемых на протяжении всего опыта. В частности, исследователь стремится сделать постоянными пространственно-временные условия эксперимента, технику его проведения, оборудование, предъявление инструкции и т. д. При тщательном применении этого способа контроля удается избежать больших погрешностей, однако проблема переноса результатов эксперимента в условия, сильно отличающиеся от экспериментальных, остается проблематичной.

В тех случаях, когда нет возможности создать и поддерживать постоянные условия на протяжении всего эксперимента, прибегают к способу балансировки . Этот способ применяется, например, в ситуации, когда внешняя ДП не поддается идентификации. В этом случае балансировка будет состоять в использовании контрольной группы. Исследование контрольной и экспериментальной групп проводится в одних и тех же условиях с той лишь разницей, что в контрольной группе отсутствует воздействие независимой переменной. Тем самым изменение зависимой переменной в контрольной группе обусловлено лишь внешними ДП, а в экспериментальной - совместным действием внешних дополнительных и независимой переменной.

Если внешняя ДП известна, то балансировка заключается в воздействии каждого ее значения в сочетании с каждым уровнем независимой переменной. В частности, такая внешняя ДП, как пол экспериментатора, в сочетании с независимой переменной (пол испытуемого) приведет к созданию четырех экспериментальных серий: 1) мужчина-экспериментатор - мужчины испытуемые; 2) мужчина-экспериментатор - женщины испытуемые; 3) женщина-экспериментатор - мужчины испытуемые; 4) женщина-экспериментатор - женщины испытуемые.

В более сложных экспериментах может применяться балансировка нескольких переменных одновременно.

Контрбалансировка как способ контроля внешних ДП практикуется чаще всего тогда, когда эксперимент включает в себя несколько серий. Испытуемый оказывается в разных условиях последовательно, однако предыдущие условия могут изменять эффект воздействия последующих. Для ликвидации возникающего в этом случае "эффекта последовательности" разным группам испытуемых экспериментальные условия предъявляются в различном порядке. Например, в первой серии эксперимента первой группе предъявляется решение интеллектуальных задач от более простых к более сложным, а второй - от более сложных к более простым. Во второй серии, напротив, первой группе предъявляется решение интеллектуальных задач от более сложных к более простым, а второй - от более простых к более сложным. Контрбалансировка применяется в тех случаях, когда есть возможность проведения нескольких серий эксперимента, однако следует учитывать, что большое число попыток вызывает утомление испытуемых.

б) Внутренние ДП, как указывалось выше, - это факторы, кроющиеся в личности испытуемого. Они оказывают весьма значительное влияние на результаты эксперимента, их воздействие достаточно трудно проконтролировать и учесть. Среди внутренних ДП можно выделить постоянные и непостоянные .

Постоянные внутренние ДП в течение эксперимента существенно не изменяются. Если эксперимент проводится с одним испытуемым, то постоянными внутренними ДП будут его пол, возраст, национальность. К этой группе факторов также можно отнести темперамент, характер, способности, склонности испытуемого, его интересы, взгляды, убеждения и другие компоненты общей направленности личности. В случае проведения эксперимента с группой испытуемых эти факторы приобретают характер непостоянных внутренних ДП, и тогда для нивелировки их влияния прибегают к специальным способам формирования экспериментальных групп.

К непостоянным внутренним ДП относятся психологические и физиологические характеристики испытуемого, которые могут либо значительно изменяться по ходу эксперимента, либо актуализироваться (или исчезать) в зависимости от целей, задач, вида, формы организации эксперимента. Первую группу таких факторов составляют физиологические и психические состояния, утомляемость, привыкание, приобретение опыта и навыков в процессе выполнения экспериментального задания. В другую группу входят установка на данный опыт и данное исследование, уровень мотивации к данной экспериментальной деятельности, отношение испытуемого к экспериментатору и своей роли подопытного и т. п.

Для уравнивания эффекта воздействия этих переменных на ответы в разных пробах существует ряд способов, успешно применяемых в экспериментальной практике.

Для устранения так называемого серийного эффекта, в основе которого лежит привыкание, используется особая очередность предъявления стимулов. Эта процедура получила название "уравновешенного чередного порядка", когда стимулы разных категорий предъявляются симметрично относительно центра стимульного ряда. Схема такой процедуры выглядит так: А В В А, где А и В - стимулы разных категорий.

Чтобы предупредить влияние на ответ испытуемого тревожности или неопытности, проводятся ознакомительные или предварительные эксперименты. Их итоги не учитываются при обработке данных.

Для предупреждения изменчивости ответов из-за накопления опыта и навыков в процессе эксперимента испытуемому предлагается так называемая "исчерпывающая практика". В результате такой практики у испытуемого до начала собственно эксперимента вырабатываются устойчивые навыки, и в дальнейших экспериментах показатели испытуемого от фактора накопления опыта и навыков уже напрямую не зависят.

В тех случаях, когда необходимо свести к минимуму влияние на ответ испытуемого утомления, прибегают к "методу вращения". Суть его состоит в том, что каждой подгруппе испытуемых предъявляется определенная комбинация стимулов. Совокупность таких комбинаций полностью исчерпывает все множество возможных вариантов. Например, при трех типах стимулов (А, Б, В) каждому из них представляется первое, второе и третье место в предъявлении испытуемым. Таким образом, первой подгруппе стимулы предъявляются в порядке АБВ, второй - АВБ, третьей - БАВ, четвертой - БВА, пятой - ВАБ, шестой - ВБА.

Приведенные способы процедурного уравнивания внутренних непостоянных ДП применимы как для индивидуальных, так и для групповых экспериментов.

Установка и мотивация испытуемых как внутренние непостоянные ДП должны поддерживаться на одном и том же уровне во время всего опыта. Установка как готовность воспринимать раздражитель и отвечать на него определенным образом создается через инструкцию, которую экспериментатор дает испытуемому. Чтобы установка была именно такой, какая требуется по задаче исследования, инструкция должна быть доступна испытуемым и адекватна задачам эксперимента. Однозначность и легкость понимания инструкции достигаются ее ясностью и простотой. Во избежание вариативности предъявления инструкцию рекомендуется зачитывать дословно или давать в письменном виде. Поддержание исходной установки контролируется экспериментатором путем постоянного наблюдения за испытуемым и корректируется путем напоминания при необходимости соответствующих указаний инструкции.

Мотивация испытуемого рассматривается главным образом как интерес к данному эксперименту. Если интерес отсутствует или слаб, то трудно рассчитывать на полноценность выполнения испытуемым предусмотренных в эксперименте заданий и на надежность его ответов. Слишком высокий интерес, "перемотивация", также чревата неадекватностью ответов испытуемого. Поэтому для получения исходно приемлемого уровня мотивации экспериментатор должен самым серьезным образом подойти к формированию контингента испытуемых и подбору стимулирующих их мотивацию факторов. В качестве таких факторов могут выступать состязательность, различные виды вознаграждения, интерес к своим показателям, профессиональный интерес и др.

Психофизиологические состояния испытуемых рекомендуется не только поддерживать на одном уровне, но и оптимизировать этот уровень, т. е. испытуемые должны находиться в "нормальном" состоянии. Следует убедиться, что до проведения опыта у испытуемого не было сверхзначимых для него переживаний, у него достаточно времени для участия в эксперименте, он не голоден и т. п. Во время проведения эксперимента не следует излишне возбуждать или подавлять испытуемого. Если же эти условия выполнить не удается, то проведение эксперимента лучше отложить.

Из рассмотренных характеристик переменных и способов их контроля становится понятой необходимость тщательной подготовки эксперимента при его планировании. В реальных условиях экспериментирования добиться 100 %-го контроля всех переменных невозможно, однако различные психологические эксперименты значительно отличаются друг от друга степенью контроля переменных.

наблюдение

эксперимент

Целенаправленное, преднамеренное и специальным образом организованное восприятие, обусловленное задачей наблюдения и не требующее от него вмешательства путём создания специальных условий

проводимый в специальных условиях опыт для получения новых научных знаний посредством целенаправленного вмешательства исследователя в жизнедеятельность испытуемого. Это упорядоченное исследование, в ходе которого исследователь непосредственно изменяет некий фактор (или факторы), поддерживает остальные неизменными и наблюдает результаты систематических изменений.

организованное, целенаправленное, фиксируемое восприятие психических явлений с целью их изучения в определённых условиях (вики)

Роберт Вудвортс (R. S. Woodworth), опубликовавший свой классический учебник по экспериментальной психологии («Experimental psychology», 1938), определял эксперимент как упорядоченное исследование, в ходе которого исследователь непосредственно изменяет некий фактор (или факторы), поддерживает остальные неизменными и наблюдает результаты систематических изменений. Отличительной особенностью экспериментального метода он считал управление экспериментальным фактором, или, по терминологии Вудвортса, «независимой переменной», и отслеживание его влияния на наблюдаемое следствие, или «зависимую переменную». Целью экспериментатора считается сохранение постоянными всех условий, за исключением одного - независимой переменной.

описательный психологический исследовательский метод, заключающийся в целенаправленном и организованном восприятии и регистрации поведения изучаемого объекта. Наблюдением называется целенаправленное, организованное и определенным образом фиксируемое восприятие исследуемого объекта. При наблюдении явления изучаются непосредственно в тех условиях, в которых они протекают в действительной жизни.

Характерные признаки:

1. Сохранение естественности психических явлений

2. Наблюдение всегда должно быть напрпавленным

3. Фиксация результатов наблюдения

1. Моделирование явления и условий исследования (экспериментальная ситуация)

2. Активное воздействие исследователя на явление (варьирование переменных)

3. Измерение реакции испытуемого под воздействием эксперимента (или после воздействия)

4. Воспроизводимость результатов (возможность повторить эксперимент по использованным методикам)

Достоинства:

1. Богатство собирательных сведений

2. Сохранение естественности условий деятельности

3. Необязательное получения согласия испытуемого (но для дальнейшего использования данных например видеозаписи разрешение испытуемого необходимо)

1. Исследователь не ожидает случайного проявления интересующих его психологических процессов, а создает условия для их появления у испытуемого.

2. Исследователь может целенаправленно изменить условияили течение психических процессов

3. Обязателен строгий учёт условий протекания эксперимента (методика)

4. Эксперимент может быть проведен с большим количеством испытуемых, что позволяет устанавливать общие закономерности развития психических процессов.

Недостатки

1. Субъективность исследователя, проекция собственных личностных качеств на испытуемого

2. Невозможно вмешиваться в ход событий без искажения, исследователь не может контролировать ситуацию.

3. Значительные затраты времени

4. Причинно-следственные связи не отделены от условий.

1. Некоторая искусственность

2. Необходимость создания константных условий (воздействияпостоянными и одинаковыми для всех испытуемых на протяжении всего опыта дополнительными переменными)

3. Предполагает согласие испытуемого (не всегда, но часто)

4. Более трудоёмко или дорого (в зависимости от типа регистрации данных, разработка методики и пр.)

5. Часто требует мотивации испытуемого

6. Зависит от психофизического состояния испытуемого (которое не всегда близко к естественному)

7. Наличие опытных исследователей

Проблемыобласти исследования

· Субъект-субъектное отношение нарушает научные правила

· Психика обладает свойством спонтанности

· Психика слишком уникальна

· Психика - слишком сложный объект исследования

Сравнение

Вопрос остается открытым. Наблюдатель не знает ответа, имеет случайное представление

Вопрос становится гипотезой – предполагает существование какой-либо зависимости между факторами

В зависимости от контроля ситуации

Ситуация менее строгая

Ситуация четко определена, условия заранее запланированы

В зависимости от строгости регистрации действий испытуемого

Точная регистрации, приборы, бланки и т.д.

Свободное описание

В результате наблюдения исследователь может выдвинуть гипотезу (научное предположение) причинно-следственного характера и затем проверить её с помощью эксперимента.

Результаты эксперимента могут искажаться в силу ряда факторов - Артефактов исследования, Связанных с ожиданиями экспериментатора или испытуемых. Один из наиболее частых артефактов обусловлен Эффектом Пигмалиона (или эффектом Розенталя), Который выражается в том, что экспериментатор, глубоко убежденный в обоснованности выдвинутой им гипотезы, непроизвольно транслирует свои ожидания испытуемым и, посредством косвенного внушения или другого влияния, изменяет их поведение в желательном направлении. Влияние испытуемых на результаты эксперимента выражается в так называемом Эффекте Хоторна: Зная или угадывая гипотезу, принятую экспериментатором, испытуемый намеренно или непроизвольно начинает вести себя соответственно его ожиданиям.

Устранить (или минимизировать) эти артефакты помогает применение Метода слепого, Суть которого в том, что испытуемые удерживаются в неведении относительно целей исследования и принятых гипотез, а разделение испытуемых на экспериментальную и контрольную группы производится без ведома экспериментатора.

Вопрос 11. Переменные психологического эксперимента

В упрощённом примере независимую переменную можно рассматривать как некий релевантный стимул (St(r)), силу которого варьирует экспериментатор, в то время, как зависимая переменная - реакция (R) испытуемого, его психики (P) на воздействие этого релевантного стимула. Схематически это можно выразить следующим образом:

Однако, как правило, именно искомая стабильность всех условий, кроме независимой переменной, в психологическом эксперименте недостижима, так как практически всегда помимо этих двух переменных присутствуют и дополнительные переменные, систематические иррелевантные стимулы (St(1)) и случайные стимулы (St(2)), ведущие соответственно к систематическим и случайным ошибкам. Таким образом окончательное схематическое изображение экспериментального процесса выглядит так:


Следовательно, в эксперименте можно выделить три вида переменных:

  1. Независимая переменная
  2. Зависимая переменная
  3. Дополнительные переменные (или внешние переменные)

Итак, экспериментатор пытается установить функциональную зависимость между зависимой и независимой переменной, что выражается в функции R=f(St(r)), попытавшись при этом учесть систематическую ошибку, возникшую вследствие воздействия иррелевантных стимулов (примерами систематической ошибки можно назвать фазы Луны, время суток и др.). Для уменьшения вероятности воздействия случайных ошибок на результат исследователь стремится проводить серию опытов (примером случайной ошибки, может быть, например, усталость или же попавшая в глаз испытуемому соринка).

Переменная (П) – любая реальность, наблюдаемые изменения которой (по конкретным параметрам или показателям методики) могут быть зафиксированы и измерены в какой-либо шкале.

Зависимая переменная (ЗП) – «отклик», или измеряемая в эксперименте переменная, изменения которой причинно обусловлены действием независимой переменной (НП). В психологическом исследовании представлена показателями деятельности испытуемого, любыми формами оценки его субъективных суждений и отчетов, психофизиологическими параметрами и т.д. О – от Observation – фиксируемый, т.е. наблюдаемый и измеряемый показатель, выступающий в качестве ЗП. Используется также термин «измеренная переменная»

Независимая переменная (НП) – экспериментальное воздействие или экспериментальный фактор (Х-воздействие) – управляемая, т.е. активно изменяемая исследователем переменная, другими словами – функционально контролируемая переменная; представлена на двух или более уровнях. В экспериментальной гипотезе понимается в качестве причинно-действующего фактора.

Двухфакторные переменные

P(L 1 ,L 2);P(L 1 ,S 1); P(S 1 ,S 2);

Обученность зависит от темперамента (L ) и метода обучения (S )

Методы обучения

холерик

сангвиник

флегматик

меланхолик

традиционное

проблемное

программируемое

Получаем 12 выборок

Виды связи между зависимыми и независимыми переменными:

Закон Вебера-Фехнера

Г.Т.Фехнер () математически обработал результаты исследований сформулировал «основной психофизический закон», по которому сила ощущения p пропорциональна логарифму интенсивности раздражителя S :


где S 0 - граничное значение интенсивности раздражителя: если S < S 0 , раздражитель совсем не ощущается; p 0 - граничное значение интенсивности ощущения
Так, люстра в которой 8 лампочек, кажется нам настолько же ярче люстры из 4-х лампочек, насколько люстра из 4-х лампочек ярче люстры из 2-х лампочек. То есть, количество лампочек должно увеличиваться в разы, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если прирост яркости постоянен, нам будет казаться, что он уменьшается. Например, если добавить одну лампочку к люстре из 12 лампочек, то мы практически не заметим прироста яркости. В то же время, одна лампочка, добавленная к люстре из двух лампочек, даёт значительный кажущийся прирост яркости.

  1. Монотонно убывающая зависимость

Закон забывания Эббингауза

Кривая забывания или кривая Эббингауза была получена вследствие экспериментального изучения памяти немецким психологом Германом Эббингаузом в 1885 год -образного типа.

Кривая Гаусса

Нормальное Распределение (кривая Гаусса)

Симметричная параболическая кривая, иногда возникающая при изображении серии результатов на частотном графике. Многие переменные образуют нормальное распределение, когда измерения проводятся в целой популяции. Считается, что рост человека и коэффициент умственного развития подчиняются принципу нормального распределения при достаточно большом количестве участников. На кривой Гаусса большинство результатов концентрируется вокруг центра, а наиболее высокие и низкие результаты встречаются гораздо реже. Эти «хвосты» нормального распределения вытягиваются в обоих направлениях вдоль оси абсцисс и теоретически никогда не соприкасаются с нею.

(Приложение к вопросу 4)

Типы переменных по Дружинину:

1. Характеристики знаний

1)Стимул и материал заданий (устная форма, письменная)

2)Тип ответа испытуемого (письменно, устно)

3)Шкала оценивания

2. Особенности ситуации

1)Физические параметры (освещенность, температура воздуха)

2)Социально-психологические (один, с группой, один на один с исследователем)

3) Особенности общения и взаимовоздействия испытуемого и экспериментатора

Классификация Кэмбелла:

1. Управляемые

2. Потенциально-управляемые (экспериментатор не изменяет условия исходя из каких-либо причин, например этических, хотя мог бы это сделать)

3.Относительно постоянные аспекты окружения (условия жизни, социальные условия, деревня, город, детсад, детдом)

4.Органические переменные (пол, возраст, зрение, физическое развитие)

5.Тестируемые или предварительно измеряемые переменные (то, что можно получить с помощью психотестов и др. методик)

Формула Курта Левина

P =f (L ,S )

Где Р – поведение, F – функция (взаимосвязь),L – внутренних причин, S – внешних причин

Нулевой называется корреляция при отсутствии связи переменных. В психологии практически нет примеров строго линейных связей (положительных или отрицательных). Большинство связей - нелинейные. Классический притер нелинейной зависимости - закон Иеркса-Додсона: возрастание мотивации первоначально повышает эффективность научения, а затем наступает снижение продуктивности (эффект «перемотивации»). Другим примером является связь между уровнем мотивации достижений и выбором задач различной трудности. Лица, мотивированные надеждой на успех, предпочитают задания среднего диапазона трдности - частота выборов на шкале трудности описывается колоколообразно кривой. Математическую теорию линейных корреляций разработал Пирсон. Ее основания и приложения излагаются в соответствующих учебниках и справочниках по математической статистике. Напомним, что коэффициент линейной корреляции Пирсона r варьируется от -1 до +1. Он вычисляется путем нормирования ковариации переменных на произведение их среднеквадратических отклонений. Значимость коэффициента корреляции зависит от принятого уровня значимость, но и от величины выборки. Чем больше модуль коэффициента корреляции, тем ближе связь переменных к линейной функциональной зависимости.


Рис. 5.17. Примеры распределений испытуемых в пространстве двух признаков а) строгая положительная корреляция, б) сильная положительная корреляция, в) слабая положительная корреляция, г) нулевая корреляция, д) отрицательная корреляция, е) строгая отрицательная корреляция, ж) нелинейная корреляция, з) нелинейная корреляция

В основе построения современной экспериментальной психологии лежит формула К. Левина - поведение есть функция личности и ситуации:

B =f(P;S).

Необихевиористы ставят в формулу вместо Р (личность) О (организм), что бо­лее точно, если считать испытуемыми не только людей, но и животных, а личность редуцировать к организму.

Как бы то ни было, большинство специалистов по теории психологического экс­перимента, в частности МакГиган , считают, что в психологии существуют два типа законов :

1) «стимул-ответ»;

2) «организм-поведение*.

Первый тип законов обнаруживается в ходе экспериментального исследования, когда стимул (задача, ситуация) - это независимая переменная, а зависимая пере­менная - ответ испытуемого.

Второй тип законов является продуктом метода систематического наблюдения и измерения, поскольку свойствами организма управлять с помощью психологичес­ких средств нельзя.

Существуют ли «пересечения»? Разумеется. Ведь в психологическом экспери­менте зачастую учитывается влияние так называемых дополнительных переменных, большинство из которых является дифференциально-психологическими характери­стиками. Следовательно, есть смысл добавить в список и «системные» законы, опи­сывающие влияние ситуации на поведение личности, обладающей определенными свойствами. Но в психофизиологических и психофармакологических эксперимен­тах можно воздействовать на состояние организма, а в ходе формирующего экспери­мента - целенаправленно и необратимо изменять те или иные свойства личности.

В классическом психологическом поведенческом эксперименте устанавливает­ся функциональная зависимость вида

R = f(S) ,

где R - ответ, a S - ситуация (стимул, задача).

Переменная S систематически ва­рьируется, а детерминируемые ею изменения ответа испытуемого фиксируются. В ходе изучения проявляются условия, при которых испытуемый ведет себя тем или иным образом. Результат фиксируется в форме линейной или нелинейной зависи­мости.

Другой тип зависимостей символизируется как зависимость поведения от лич­ностных свойств или состояний организма испытуемого:

R = f(О) или R = f(Р).

Исследуется зависимость поведения испытуемого от того или иного состояния организма (болезни, усталости, уровня активации, фрустрации потребностей и т. д.) или от личностных свойств (тревожности, мотивации и т. д.). Исследования прово­дятся с участием групп людей, различающихся по данному признаку: свойству или актуальному состоянию.

Естественно, эти две строгие зависимости являются простейшими формами от­ношений между переменными. Возможны более сложные зависимости, устанавливаемые в конкретном эксперименте, в част­ности, факторные планы позволяют выявить зависимости вида R = f (S 1 , S 2), когда ответ испытуемого зависит от двух варьируемых параметров ситуации, а поведение является функцией состояния организма и среды.


Остановимся на формуле Левина . В об­щей форме она выражает идеал эксперимен­тальной психологии: возможность предска­зать поведение конкретной личности в опре­деленной ситуации. Переменная «личность», которая входит в состав этой формулы, врядли может рассматриваться лишь как «дополнительная». Традиция необихевиоризма предлагает использовать термин «промежу­точная» переменная. В последнее время за такими «переменными» - свойствами и состояниями личности - закрепился тер­мин «переменная-модератор», т. е. посредник.

Рассмотрим основные возможные варианты отношений между зависимыми пе­ременными.

Существует, как минимум, шесть видов, связи переменных .

Первый , он же простейший, - отсутствие зависимости , Графически он выражается в форме прямой, параллельной оси абсцисс на графике, где по оси абсцисс (X) отложены уровни независимой переменной. Зависимая переменная не чувствительна к изме­нению независимой (см. рис. 4.8).

Монотонно возрастающая зависимость наблюдается тогда, когда увеличению значений независимой переменной соответствует изменение зависимой перемен­ной (см. рис. 4.9).

Монотонно убывающая зависимость наблюдается, если увеличению значений независимой переменной соответствует уменьшение уровня независимой перемен­ной (см. рис. 4.10).

Нелинейная зависимость – U-образного типа обнаруживается в большинстве экс­периментов, в которых выявляются особенности психической регуляции поведения: (см. рис. 4.11).

Инвертированная U-образная зависимость получается в многочисленных экспе­риментальных и корреляционных исследованиях как в психологии личности, моти­вации, так и в социальной психологии (см. рис. 4.12).

Последний вариант зависимости обнаруживается не так часто, как предыду­щие, - сложная квазипериодическая зависимость уровня зависимой переменной от уровня независимой (см. рис. 4.13).

При выборе способа описания работает «принцип экономии». Любое простое описание лучше, чем комплексное, даже если они одинаково успешны. Поэтому ар­гументы, распространенные в отечественных научных дискуссиях типа «Все гораз­до сложнее на самом деле, чем представляет автор» по меньшей мере бессмыслен­ны. Тем более что никто не знает, как «на самом деле».

Так называемое «комплексное описание», «многомерное описание» есть зачас­тую просто попытка уйти от решения научной проблемы, способ маскировки лич­ной некомпетентности, которую хотят скрыть за путаницей корреляционных свя­зей и сложносоставными формулами, где все всему равняется.

Теоретическая валидизация в социологическом исследовании: Методология и методы

Анализ парных связей

Описание взаимосвязей между явлениями и процессами - отдельная тема. Поэтому предлагаю поговорить о ней более подробно.

0 Нажми, если пригодилось =ъ

Согласно исследованию научных публикаций в наиболее престижных зарубежных журналах, посвященных социальным и поведенческим наукам (Ч.Теддли, М.Элайс, 2010), 77% всех социологических исследований проведены в рамках количественного подхода. Из них 71% является корреляционными исследованиями или исследованиями, посвященными изучению связей между социальными явлениями.
Самый простой вид корреляционных исследований - изучение парных взаимосвязей или совместной изменчивости двух переменных. Такого рода исследования пригодны для решения двух научных задач:

а) доказательства существования причинно-следственной связи между переменными (наличие связи является важным, но не единственным, условием причинно-следственной зависимости); б) предсказания: в случае наличия связи между переменными можно с определенным уровнем точности предсказывать значения одной переменной, если нам известно значение другой.
Связь между двумя переменными есть в том случае, когда изменение категории одной переменной ведет к изменению распределения второй:

Продуктивность труда

Удовлетворенность работой

Более удобный для анализа вид таблица примет, если мы рассчитаем процентные величины по каждому из столбцов:

Продуктивность труда

Удовлетворенность работой

Легко заметить, что в зависимости от категории переменной "Удовлетворенность работой" переменная "Продуктивность труда" меняет свое распределение. Следовательно, мы можем сделать вывод о существовании связи между переменными.
Также из этого примера видно, что каждому из значений одной переменной отвечает несколько значений другой. Такие связи называются статистическими или вероятностными. В данном случае, связь между переменными не является абсолютной. В нашем случае это означает, что кроме удовлетворенности работой есть и другие факторы, влияющие на продуктивность труда.
В случае же, когда одному значению первой переменной соответствует лишь одно значение второй, говорят о функциональных связях. Вместе с тем, даже когда есть основания говорить о функциональной связи, невозможно на все 100% продемонстрировать ее в эмпирической действительности по двум причинам: а) из-за погрешности измерительных инструментов; б) из-за невозможности контроля всех условий окружающей среды, влияющих на эту связь. И поскольку в социальных науках ученые имеют дело именно с вероятностными связями, постольку ниже речь пойдет именно о них.
Парные связи владеют тремя характеристиками: силой, направлением и формой.
Сила показывает насколько согласованна изменчивость двух переменных. Сила связи может изменяться в диапазоне от 0 до +1 (если хотя бы одна из переменных относится к номинальной шкале) или от -1 до +1 (если обе переменные относятся, по крайней мере, к порядковой шкале). При этом 0 и близкие к ней величины говорят об отсутствии связи между переменными, а величины близкие к +1 (прямая связь) или -1 (обратная связь) - о сильной связи. Один из вариантов интерпретации связи, с точки зрения ее силы, выглядит следующим образом:

Все значения в таблице приведены в модуле, т.е. должны анализироваться безотносительно к знаку. Так, например, связь -0,67 и +0,67 являются одинаковыми по силе, но разными по направлению.
Сила связи определяется с помощью коэффициентов корреляции. К коэффициентам корреляции относятся, например, фи и V-крамера (номинальные переменные, мало категорий/табличный вид), Гамма (порядковые переменные, мало категорий/табличный вид), Кендалла и Спирмена (порядковые переменные, много категорий), Пирсона (метрические переменные, много категорий).
Направление говорит о характере взаимного изменения категорий переменных. Если с увеличением значений одной переменной значения другой переменной также увеличиваются, то связь является прямой (или положительной). Если же ситуация противоположная и увеличение значений одной переменной ведет к уменьшению значений второй, то связь обратная (или отрицательная).
Направление связи может иметь место только в тех случаях, когда речи идет о порядковых и/или метрических переменных, то есть тех переменных, значения которых можно упорядочить от меньших к большим или наоборот. Таким образом, если хотя бы одна переменная относится к номинальной шкале, то можно говорить только о силе связи и ее форме, но не о направлении.

Направление связи можно определить либо с помощью таблиц сопряженности (мало категорий), либо с помощью диаграммы рассеяния (много категорий), либо с помощью знака коэффициента корреляции (количество категорий переменных не имеет значения):

Пример положительной связи

2-я перем-я

1-я перем-я

Пример отрицательной связи

2-я перем-я

1-я перем-я

Для правильной интерпретации связи с помощью таблиц необходимо их правильное оформление. Так, в нашем случае, категория А является наименьшим значением в случае обоих переменных, а категория С - наибольшим.

В данной диаграмме представлена взаимосвязь между количеством усилий, которые прикладывают студенты в процессе учебы (10-бальная порядковая шкала, ось Х), и успешностью их учебы в бакалаврате (среднее значение успешности сдачи сессий за 4 года обучения, ось Y). Поскольку нижний левый угол соответствует малым значениям обоих переменных, а верхний правый - большим, постольку диаграмма свидетельствует о положительной взаимосвязи между переменными. Думаю, вы представляете, как бы выглядела диаграмма рассеяния в случае отрицательной взаимосвязи.


В результате подсчета коэффициент корреляции равен либо положительному, либо отрицательному значению, что само по себе говорит о его направлении.
Несмотря на то, что значения коэффициента корреляции достаточно для получения основной информации про связь между переменными, его вычисление принято предварять построением таблицы или диаграммы рассеяния, которые необходимы для получения дополнительной информации, в частности - про форму связи.

Форма связи указывает на особенности совместной изменчивости двух переменных. В зависимости от того, к какой шкале относится переменная, форму связи можно проанализировать либо с помощью столбчатой диаграммы/таблицы сопряженности (если хотя бы одна переменная является номинальной), либо с помощью диаграммы рассеяния (для порядковых и метрических шкал).
Обратимся к примеру. В одном из своих исследования, единицами анализа которого выступили две кафедры разных вузов, я установил, что сила связи между переменными равна 0,83 в обоих случаях (в качестве переменных выступили тип студента и успешность сдачи последней сессии). Таким образом, сила и направление связи были одинаковы для обоих вузов. В свою очередь форма связи показала важные отличия (нажмите на график для увеличения):


Различия в форме распределения очевидны. Судя по всему, на первой кафедре значительно легче учиться, чем на второй. На это, в частности, указывает количество студентов, сдавших сессию на отлично.
Диаграммы рассеяния дают более ценную в аналитическом смысле информацию - кроме сравнения различных единиц анализа, они позволяют оценить отклонение связи от линейности. Линейность является важным условием эффективного применения коэффициентов корреляции и многих других статистических методов. Она наблюдается в том случае, когда каждое новое увеличение значений одной из переменных на единицу ведет к увеличению значений другой переменной на одинаковую или приблизительно одинаковую величину. Так, для приведенной ранее диаграммы рассеяния, увеличение значения 10-бальной шкалы на единицу ведет к увеличению успешности студента на величину близкую к 0,2.
Когда связь между переменными достаточно близка к идеальной линейной модели, коэффициенты корреляции адекватно отображают силу связи и ее направление (в случае представленной ранее диаграммы рассеяния, сила связи равна 0,93). В противном случае (т.е. в случае нелинейных связей) необходимо использовать специальные методы анализа данных. Примером диаграммы, демонстрирующей криволинейную связь, может служить следующий:


Такая форма связи может быть, например, между тревожностью студента и успешностью сдачи экзамена, когда как чрезмерно низкая, так и чрезмерно высокая тревожность приводят к снижению успешности.
Подводя итог, хочется отметить один важный момент: анализ связи с точки зрения ее силы, направления и формы - это только первый шаг анализа парных связей. После того, как мы определили что взаимосвязь представляет научный или практический интерес, необходимо проверить ее на статистическую значимость, так как наличие связи в выборке еще не означает ее наличие в генеральной совокупности. Такого рода задачи решаются с помощью методов статистического вывода, специфика которых рассмотрена .